Назначение и принцип действия осциллографа. Принцип работы осциллографа. Достоинства электронных осциллографов

Осциллограф входит в комплект необходимых измерительных приборов при работе с электронными устройствами. Осциллограф – это единственный вид измерительных устройств, который позволяет наблюдать форму сигнала непосредственно, а также оценивать его амплитудные и временные характеристики. Современные осциллографы по точности измерения параметров не уступают специализированным измерительным приборам – вольтметрам, частотомерам.

Назначение осциллографа – это наблюдение формы сигнала, измерение его мгновенных параметров в любой момент времени наблюдения, сравнение формы и фазовых сдвигов с другими колебаниями.

Устройство и принцип действия

Устройство электронного осциллографа можно без преувеличения назвать одним из самых сложных среди большинства измерительных приборов. По принципу работы он практически идентичен телевизионному приемнику, с той разницей, что вместо сигнала изображения на его вход подается исследуемый сигнал.

В основе устройства лежит электронно-лучевая трубка, на которой визуально отображается состояние входного электрического сигнала. Для того чтобы согласовывать изображение на экране с реальной формой колебаний, электронный луч осциллографа управляется генератором строчной развертки.

Электронно-лучевая трубка осциллографа имеет в составе две пары отклоняющих пластин, которые управляют положением электронного луча на экране. Первая пара расположена горизонтально и отвечает за отклонение луча по горизонтали. Для этого на нее подается напряжение пилообразной формы от генератора горизонтальной развертки. Постепенно увеличивающееся напряжение вызывает линейное отклонение луча по горизонтали. Во время резкого спада импульса развертки луч возвращается назад для того, чтобы начать движение заново. Момент возврата луча не должен быть виден на экране, поэтому в это время на экран подается напряжение гашения луча.

Наиболее полно уяснить работу осциллографа можно, рассмотрев блок-схему внутреннего устройства.

Схема осциллографа позволяет более детально понять принцип его работы. По ней видно, что в состав прибора входит два канала: вертикального и горизонтального отклонения.

Горизонтальная развертка

Канал горизонтального отклонения (называется канал X) подключен к генератору развертки, который вырабатывает сигнал горизонтального отклонения лучей ЭЛТ. Генератор развертки может работать в нескольких режимах:

  • Внутренняя синхронизация. Работает в режиме автоколебаний с вручную выставленной частотой;
  • Внешняя синхронизация. Запуск генератора происходит от входных импульсов. Включает три подрежима: запуск по фронту или по спаду импульсов и от внешнего источника колебаний;
  • Синхронизация от питающей сети (50Гц);
  • Ручной (однократный) запуск.

Режим внутренней синхронизации удобен при исследованиях сигналов стабильной частоты, поскольку только при таком условии наблюдается стабильное неподвижное изображение. Для увеличения стабильности в данном режиме может быть организован захват частоты на входе собственным генератором развертки.

В режиме внешней синхронизации, его еще называют ждущий режим, запуск генератора производится в момент достижения входным сигналом определенного уровня или от внешнего источника. Данный режим удобен для исследования недостаточно стабильных колебаний, особенно, когда используется синхронизация генератора развертки и исследуемой схемы от одного источника колебаний. Для точной установки уровня, с которого начинается запуск генератора, в приборе предусмотрена регулировка.

Зачем предусмотрена синхронизация от сети? При синхронизации от питающей сети запуск развертки происходит синхронно с колебаниями сетевого напряжения, что очень удобно при наблюдении помех и искажений, вносимых устройствами питания.

К сведению. Ручная синхронизация используется при исследовании непериодических сигналов, например, в логических схемах.

Вертикальная развертка

По аналогии с координатной сеткой канал вертикального отклонения именуется канал Y. В нем происходит обработка входного исследуемого сигнала, который подается в канал через аттенюатор – ступенчатый регулятор уровня. Так сделано для того, чтобы амплитуда измеряемого параметра не превышала допустимого уровня, и наблюдаемая картинка не выходила за границы экрана. Канал вертикального отклонения имеет возможность передачи сигнала на задающий генератор горизонтального отклонения для синхронизации последнего.

Обычный режим работы канала Y – открытый. Это означает, что вертикальное отклонение луча будет в точности соответствовать уровню сигнала. Когда имеется постоянная составляющая, она может мешать наблюдению колебаний, поскольку картинка на экране будет сильно смещена к верхней или нижней границе экрана или даже выходить за нее. Либо же придется подгонять аттенюаторов в размер экрана. Постоянную составляющую можно убрать, переключив канал в режим закрытого входа.

Что такое закрытый вход? В таком случае сигнал поступает через конденсатор, который не создает препятствий для переменного напряжения.

Оба канала имеют оконечные усилители, которые формируют необходимые уровни сигналов, подаваемых на отклоняющие пластины.

Основные параметры

Как и любой другой измерительный прибор, электронный осциллограф имеет характеристики, которые определяют возможную область применения:

  • Для того чтобы вход устройства не вносил искажения в исследуемую схему, его сопротивление должно быть достаточно велико. Подавляющее большинство осциллографов имеет сопротивление входа 1 Мом;
  • Второй важный параметр – верхняя граничная частота исследуемого сигнала. Современные осциллографы способны работать с колебаниями гигагерцовой частоты. Здесь имеется в виду не только частота сигнала, но и длительность фронта или спада отдельных импульсов, то есть время изменения амплитуды. Это важно при исследовании сигналов несинусоидальной формы. Чем ближе форма сигнала к прямоугольной, тем больше в нем присутствие высокочастотных гармонических составляющих. Если входные цепи не рассчитаны на такую частоту, то на изображении передняя и задняя стенки импульсов будут передаваться с искажениями. Частота будет отображаться верно, но форма импульса уже не будет соответствовать реальной;

Важно! При исследованиях прямоугольных колебаний верхняя допустимая частота электронно лучевого осциллографа должна в несколько раз превосходить частоту сигнала.

  • Диапазон допустимых значений уровня. Разумеется, что колебания малого уровня не будут способны вызвать отклонения электронного пучка ЭЛТ или выйдут из допустимых пределов разрешающей способности аналого-цифрового преобразователя частоты. Высокие значения мало того что вызовут искажения изображения, но могут и вывести из строя входные цепи устройства.

Области применения

Как уже понятно из предыдущих описаний, осциллографы служат для исследований формы периодических и дискретных сигналов. В некоторых случаях измерений без них обойтись практически невозможно. Вольтметр и амперметр дают только понятие об уровнях сигнала, частотомер – об их частоте, но полной картины без использования осциллографа достигнуть невозможно.

Одна из значительных областей применения – исследование формы телевизионного сигнала, где, кроме сигнала, несущего информацию о передаваемом изображении, присутствуют данные о сигналах синхронизации кадровой и строчной разверток, импульсах цветовой синхронизации и прочей дополнительной информации. Наблюдения осциллографических изображений телевизионного сигнала позволяют значительно облегчить ремонт и регулировку трактов изображения телевизионных приемников.

Типы осциллографов

По принципу построения внутренней схемотехники электронно лучевые осциллографы делятся на:

  • Аналоговые;
  • Цифровые;
  • Аналоговые с цифровой обработкой сигнала.

Исторически первыми появились аналоговые устройства, так как требовали наличия обычных аналоговых компонентов для работы внутренних составляющих. При этом они обеспечивали достаточно точное отображение формы сигнала, но не имели возможности производить замеры амплитудных и частотных характеристик. Движение электронного луча вкупе с искажениями, вносимыми входным трактом, давали большую нелинейность при определении амплитуды и частоты сигнала. Таким образом, по этим параметрам можно было производить только оценочные измерения.

Наблюдения были возможны только для периодических сигналов.

Появление специальных электронно-лучевых трубок позволило организовать память на одно движение луча горизонтальной развертки. Это было необходимо для оценки однократных сигналов или импульсных помех.

Более широкие возможности имеют устройства с цифровым трактом обработки сигнала, который после входных цепей осциллографа подавался на аналого-цифровой преобразователь. Данный алгоритм позволил производить точные измерения параметров, в том числе напряжение и частоту следования, длительность импульсов. Используя запоминающее устройство, легко можно было организовать запоминание любых участков формы сигнала без применения специальных трубок.

Цифроаналоговые осциллографы бывают двух подвидов. В первых из них цифровой тракт использовался только как дополнение к аналоговому для измерения параметров, во вторых – использовался для формирования изображения на ЭЛТ. Первый тип устройств по своим параметрам ничем не отличался от классических аналоговых, имея дополнительную опцию по измерению параметров. Второй подвид вплотную приблизился к полностью цифровым приборам, отличаясь только устройством отображения информации.

Цифровые осциллографы используют для отображения информации жидкокристаллический дисплей, на котором, кроме формы сигнала, отображаются все измеряемые параметры:

  • Напряжение: амплитудное, среднее;
  • Частота сигнала;
  • Длительность импульсов;
  • Длительность фронта и спада импульсов;
  • Фазовые сдвиги.

Таким образом, один прибор способен заменить собой большую часть измерительных приборов.

Первые цифровые осциллографы характеризовались малой разрешающей способностью экрана и в этом качестве сильно уступали аналоговым устройствам, рисуя на дисплее сильно искаженную картинку сигнала. В настоящее время это ограничение снято, и качество изображения не уступает электронно-лучевой трубке.

Важно! Среди полезных качеств цифровых осциллографов следует отметить широкие возможности по запоминанию изображения и параметров измеряемых сигналов на различных участках времени, хранение информации и вывод ее на печать или передачу на внешние носители.

Методика измерений

Перед началом работы производится калибровка прибора. Для этой цели предусмотрены выходы встроенного калибратора со строго фиксированными значениями частоты и напряжения. Регулировкой чувствительности и частоты устанавливают изображение на экране в соответствии с нормой.

Для измерений следует иметь в виду, что щупы осциллографа имеют два вывода, один из которых подключается к общей точке электросхемы – массе.

Предварительно на входном аттенюаторе выставляется уровень, соответствующий напряжению измеряемого сигнала. Если это значение неизвестно, то следует начинать с максимального положения. Обычно это 100 В на одно деление экрана. Переключая положение аттенюатора, добиваются того, чтобы картинка занимала большую часть экрана.

Далее выставляют требуемый режим синхронизации и частоту развертки задающего генератора. На регуляторе частоты установлены значения длительности периода колебаний. То есть, если переключатель установлен в положение 20 мс/дел, это означает, что период колебаний длительностью 20 мс будет укладываться в одно деление координатной сетки. Это соответствует частоте 50 Гц.

Регулятором уровня и синхронизации добиваются неподвижности изображения.

Для измерений используется следующая методика:

  1. Уровень сигнала определяют, подсчитывая, сколько делений по вертикали занимает изображение. Полученное число умножают на значение аттенюатора;
  2. Также определяют и длительность сигнала, с тем отличием, что отсчитывают деления по горизонтали и умножают число на значение регулятора длительности. Частоту определяют по формуле:

Дополнительные возможности

Существуют многоканальные осциллографы, у которых имеется несколько входов Y и, соответственно, можно наблюдать сразу несколько сигналов. Для чего нужен многоканальный осциллограф? Он незаменим для определения фазовых сдвигов колебаний относительно друг друга и их сравнения.

Для увеличения входного диапазона применяются входные делители 1:10 или 1:100, которые поднимают допустимое верхнее значение сигнала в 10 и 100 раз, соответственно. Этот факт нужно учитывать при измерениях в дальнейшем. Наличие входного делителя при этом пропорционально увеличивает и входное сопротивление прибора.

Цифровые осциллографы избавляют от необходимости ручного подсчета амплитуды и частоты, выводя эти значения на экран. Кроме того, они позволяют заносить изображение в память и передавать его на внешнее печатающее устройство.

При отсутствии дополнительных входов Y для определения фазовых сдвигов нужен осциллограф, у которого предусмотрен вход Х с отключенным внутренним генератором развертки. Подавая колебания на входы X и Y, можно сравнивать фазы и частоты по так называемым фигурам Лиссажу.

Видео

Осциллограф - прибор, показывающий форму напряжения во времени. Также он позволяет измерять ряд параметров сигнала, такие как напряжение, ток, частота, угол сдвига фаз. Но главная польза от осциллографа - возможность наблюдения формы сигнала. Во многих случаях именно форма сигнала позволяет определить, что именно происходит в цепи. На рис. 1 показан пример подобной ситуации.

Рис. 1. Осциллограмма сложного сигнала.

В этом случае напряжение содержит как постоянную, так и переменную составляющие, причем форма переменной составляющей далека от синусоидальной. На таком сигнале вольтметры дают большую ошибку: стрелочный вольтметр переменного тока показал напряжение 2,2 вольт, а цифровой - вообще 1,99 вольт. Вольтметр постоянного тока показал 4,8 вольт. Правильное действующее значение напряжения показал осциллограф - 5,58 вольт (цифровые осциллографы измеряют напряжение и позволяют сохранять результаты в компьютерном формате). Кроме того, осциллограмма позволяет увидеть некоторые свойства сигнала:

  • сигнал имеет импульсный характер;
  • сигнал не принимает отрицательных значений (измерено с открытым входом осциллографа);
  • сигнал очень быстро изменяется от нуля до значения 6,4 вольта и обратно до нуля (чувствительность канала вертикального отклонения 2 V/дел);
  • длительность импульсов более чем в три раза превышает длительность пауз.

В общем, лучше один раз увидеть, чем сто раз услышать.

В подавляющем большинстве случаев исследуются периодические сигналы, именно про них мы и будем говорить.

1. Принцип действия осциллографа

«Сердцем» прибора является электронно-лучевая трубка (ЭЛТ), рис.2.

Рис. 2. Устройство электронно-лучевой трубки с электростатическим управлением.

ЭЛТ является электронной лампой, и, как и все лампы, она «заполнена» вакуумом. Катод излучает электроны, а система фокусировки формирует из них тонкий луч. Этот электронный луч попадает на экран, покрытый люминофором, который под воздействием электронной бомбардировки светится, и в центре экрана возникает светящаяся точка. Две пары пластин ЭЛТ отклоняют электронный луч в двух взаимно перпендикулярных направлениях, которые можно рассматривать как координатные оси. Поэтому для наблюдения на экране ЭЛТ исследуемого напряжения необходимо, чтобы луч отклонялся по горизонтальной оси пропорционально времени, а по вертикальной оси - пропорционально исследуемому напряжению.

На пластины горизонтального отклонения луча (расположенные вертикально) подается напряжение развертки. Оно имеет пилообразную форму: постепенно линейно нарастает и быстро спадает (рис. 3). Отрицательное напряжение отклоняет луч влево, а положительное - вправо (если смотреть со стороны экрана). В результате луч движется по экрану слева направо с определенной постоянной скоростью, после чего очень быстро возвращается к левой границе экрана и повторяет свое движение. Расстояние, которое проходит луч вдоль горизонтальной оси, пропорционально времени. Этот процесс называется разверткой, а горизонтальная линия, которую луч прочерчивает по экрану, называется линией развертки (иногда при измерениях ее называют нулевой линией). Она играет роль оси времени t графика. Частота повторения пилообразных импульсов называется частотой развертки, но она для измерений не используется. Для измерений нужно знать скорость развертки, про которую будет сказано ниже.

Рис. 3. Форма напряжения развертки.

Если при этом на пластины вертикального отклонения (расположенные горизонтально) подать исследуемое напряжение, то луч начнет отклоняться и по вертикали: при положительном напряжении вверх, а при отрицательном - вниз. Движения по вертикали и по горизонтали происходят одновременно и в результате исследуемый сигнал «разворачивается» во времени. Получившееся изображение называется осциллограммой.

На самом деле кроме линейной существует еще круговая и спиральная развертки, а также фигуры Лиссажу, когда один из сигналов является разверткой для второго. Но это уже совсем другая история…

Важным моментом является соотношение частот развертки и сигнала. Если эти частоты в точности равны, то на экране отображается ровно один период исследуемого сигнала. Если частота сигнала вдвое больше частоты развертки, то мы увидим два периода, если втрое - то три. Если частота сигнала вдвое меньше частоты развертки, то мы увидим только половину периода сигнала. Частоту (скорость) развертки можно регулировать в широких пределах. Но изображение будет стабильным только в том случае, если частоты развертки и сигнала точь-в-точь совпадают. При малейшем несовпадении частот, каждое начало движения луча по экрану будет соответствовать новой точке функции входного сигнала, и ее график каждый раз будет рисоваться в новом положении. При небольшом несовпадении частот (доли герца) это будет выглядеть как график, «плывущий» влево или вправо. При несовпадении частот в несколько герц и более, осциллограмма становится нечитаемой (рис. 4).

Рис. 4. Осциллограмма при отсутствии синхронизации.

А ведь добиться абсолютно точного совпадения частот (особенно в десятки-сотни килогерц) практически невозможно. Поэтому разверткой в осциллографе управляет специальная схема синхронизации. Она задерживает начало движения луча по экрану так, чтобы луч начинал двигаться в тот момент, когда входное напряжение достигло определенного значения. В этом случае луч начинает движение (и рисование осциллограммы) каждый раз с одной и той же точки графика входного сигнала. В результате каждое следующее движение луча рисует картинку в одном и том же положении, даже если частоты сигнала и развертки заметно не совпадают. Изображение получается стабильным и устойчивым. Напряжение сигнала, при котором происходит синхронизация (уровень синхронизации), задается органами управления осциллографа. Визуально изменение этого напряжения вызывает смещение начала изображаемого графика относительно начала периода сигнала, рис. 5.

Рис. 5. Осциллограммы при разных уровнях синхронизации.

Для того чтобы можно было наблюдать несколько сигналов одновременно, выпускают многолучевые и многоканальные осциллографы. Обычно число каналов равно двум (иначе получается очень сложно и дорого). ЭЛТ двухлучевых осциллографов работает одновременно с двумя лучами на общем экране, которые позволяют наблюдать два сигнала абсолютно независимо. Но такие приборы сложны и дороги. Поэтому больше распространены двухканальные осциллографы. Их ЭЛТ самая обычная, но они имеют два отдельных входа и два независимых усилителя вертикального отклонения, которые обслуживают входные сигналы. Кроме того, они имеют встроенный высокоскоростной коммутатор, очень быстро переключающий ЭЛТ (пластины вертикального отклонения) от одного канала к другому. Изображения сигналов при этом не являются непрерывными линиями, а состоят из множества штрихов. Но на экране штрихи сливаются, и в результате получается два графика входных сигналов. Лишь при наблюдении высокочастотных сигналов и неудачной частоте развертки изображение может стать пунктирным.

2. Подключение осциллографа

Поскольку напряжение измеряется между двумя точками, то вход осциллографа имеет две клеммы. Причем они не равнозначны. Одна клемма, называемая «фаза», подключена ко входу усилителя вертикального отклонения луча. Вторая клемма - «земля» или «корпус». Она называется так потому, что электрически соединена с корпусом прибора (это общая точка всех его электронных схем). Осциллограф показывает напряжение фазы по отношению к земле .

Очень важно знать, какой из входных проводников является фазой. В импортных приборах обычно используются специализированные щупы, земля которых имеет зажим типа «крокодил» так как часто подключается к корпусу исследуемого устройства, а фаза оканчивается либо «иголкой», которой можно удобно и надежно «воткнуться» даже в контакт маленького размера, либо зажимом (рис. 6). В этом случае перепутать фазу и корпус в принципе невозможно.

Рис. 6. Щуп импортного осциллографа, слева «игла», справа зажим.

Осциллографы отечественного производства чаще всего комплектуются шнурами, имеющими стандартные для России 4-мм штекеры (к ним иногда применяется название «банан», пришедшее из аудиотехники), рис. 7. В этом случае оба штекера одинаковы, и для того, чтобы их различать используются дополнительные признаки. Этих признаков несколько, и они могут встречаться в любом сочетании:

Однако, к сожалению, эти правила выполняются не всегда. Особенно это относится к кабелям, прошедшим ремонт: туда могут поставить любой проводник, имеющийся в наличии и первый попавшийся штекер. Поэтому есть еще один способ определения фазы и корпуса, дающий стопроцентную гарантию.

Рис. 7. Штекер отечественного осциллографа.

Для определения какой из проводников является фазой, а какой корпусом, надо при никуда не подключенном осциллографе взяться рукой за контакт одного из входных проводников, при этом другой рукой ни до чего не дотрагиваться. Если этот проводник - корпус, то на экране будет только лишь горизонтальная линия развертки. Если этот проводник - фаза, то на экране возникнут довольно значительные помехи, представляющие собой сильно искаженную синусоиду частотой 50 Гц (рис. 8).

Рис. 8. Помехи на экране осциллографа при касании рукой фазы входного кабеля.

Эти помехи возникают из-за того, что существует емкость между телом человека и проводами сети, проложенной в помещении. И возникает ток, протекающий по такой цепи: фаза осветительной сети переменного тока 220 В 50 Гц - емкость между проводами сети и телом человека - рука человека - вход усилителя (фаза входного кабеля) - электронная схема усилителя - корпус осциллографа - емкость между корпусом и Землей - нейтральный провод сети (он всегда заземлен). Цепь замкнута, ток течет. Величина этого тока составляет 10^-8…10^-6 ампера, но вход осциллографа имеет очень высокое сопротивление (порядка 10^6 Ом), поэтому на нем возникает достаточно большое напряжение. Синусоида выглядит искаженной оттого, что емкостное сопротивление участка сеть - тело человека зависит от частоты: чем частота выше, тем сопротивление меньше. Поэтому высокочастотные составляющие (гармоники сети и проникшие в нее помехи) создают больший ток и большее напряжение на входе осциллографа.

Определив фазу и корпус входного кабеля, можно подключать осциллограф к исследуемой цепи. Если в ней нет четко выраженного общего провода, то корпус подключается к любой из точек, напряжение между которыми требуется исследовать. Если в цепи присутствует общий провод - точка, условно принимаемая за нулевой потенциал, соединенная с корпусом устройства или реально заземленная, то корпус осциллографа лучше подключать к этой точке. Невыполнение этого правила может привести к значительным погрешностям измерений (иногда настолько большим, что измерениям и вовсе нельзя доверять).

По своей сути осциллограф является вольтметром, показывающим график напряжения. Однако с его помощью можно наблюдать и форму тока. Для этого последовательно с исследуемой цепью включают резистор Rт (здесь индекс «т» означает токовый), рис. 9. Сопротивление резистора Rт выбирают намного меньшим, чем сопротивление цепи, тогда резистор не влияет на ее работу и его включение не приводит к изменениям режима работы цепи. На резисторе по закону Ома возникает напряжение:

Это напряжение и измеряется осциллографом. А зная величину Rт можно перевести напряжение, показываемое осциллографом в ток.

Рис. 9. Измерение тока осциллографом.

Двухканальный (и двухлучевой) осциллограф может показывать осциллограммы двух сигналов одновременно. Для этого у него имеется два входа (канала), обычно обозначаемых I и II. Следует помнить, что одна из входных клемм каждого канала соединена с корпусом осциллографа, следовательно, клеммы «корпус» обоих каналов соединены между собой. Поэтому эти клеммы должны подключаться к одной и той же точке цепи, иначе в цепи произойдет замыкание (рис. 10).

Рис. 10. Подключение двухканального осциллографа. «Земли» входов могут создать замыкание в цепи.

На рис. 10а точки цепи В и D оказались замкнутыми между собой через корпус осциллографа (замыкающий проводник показан пунктиром). В результате конфигурация цепи изменилась.

Возможность наблюдать не любые два напряжения, а только имеющие общую точку, является недостатком, но небольшим - в электронике один из полюсов источника питания всегда является общим проводом, и все напряжения измеряются относительно него.

Используя двухканальный осциллограф можно одновременно наблюдать и напряжение, и ток в цепи. И таким образом измерять сдвиг фаз между током и напряжением. Схема подключения осциллографа в этом случае показана на рис. 11.

Рис. 11. Подключение осциллографа для измерения сдвига фаз.

Канал I измеряет напряжение, а канал II измеряет ток. Такое включение наиболее оптимально, т.к. напряжение, падающее на резисторе Rт и подаваемое в канал II, в 30…100 раз меньше, чем в канале I, следовательно, оно больше подвержено помехам и синхронизация от низкого напряжения не такая хорошая. Кроме того, конструкция большинства осциллографов несколько «несимметричная» - синхронизация от сигнала канала I обычно более качественная и стабильная. Таким образом, подключение канала I к напряжению обеспечивает более стабильное изображение осциллограммы.

Ошибка подключения на рис. 11б состоит в том, что клеммы корпуса обоих входов не соединены в одной точке. В результате резистор Rт оказывается замкнут накоротко через корпус осциллографа. Самое неприятное, что при этом напряжение на резисторе Rт не равно нулю - из-за того, что сопротивление проводов входных кабелей (через которые этот резистор замыкается) не нулевое. Поэтому при таком подключении можно не заметить эту ошибку (ведь осциллограф что-то показывает), а результат измерения тока при этом будет неверным.

Включение, показанное на рис. 11в неудачно тем, что канал I осциллографа измеряет не напряжение в исследуемой цепи, а сумму напряжений в цепи и на резисторе Rт (напряжение измеряется не на нагрузке, а на источнике). Напряжение на Rт хоть и небольшое по величине, но все равно вносит погрешность в измерение напряжения.

Подключение осциллографа, показанное на рис. 11а не только обеспечивает наибольшую точность измерений, но и позволяет в ряде случаев использовать резистор Rт с довольно большим сопротивлением. Это важно при измерении малых токов: если и ток в цепи и сопротивление Rт малы, то возникающее на Rт напряжение может быть настолько маленьким, что чувствительности осциллографа не хватит для его отображения.

При измерении сдвига фаз необходимо инвертировать сигнал в канале II, поскольку канал II включен встречно по отношению к каналу I.

Рассмотрим переднюю панель двухканального осциллографа С1-83 (рис. 12).

Рис. 12. Передняя панель осциллографа С1-83.

А - управление каналом I.
Б - управление отображением каналов.
В - управление каналом II.
Г - регулировка яркости луча, фокусировки и подсветки экрана.
Д - управление разверткой.
Е - управление синхронизацией.

Хорошо видно, что экран осциллографа разбит на клетки. Эти клетки называются делениями, и используются при измерениях: к ним привязываются все масштабы по вертикали и горизонтали. Масштаб по вертикали - вольты на деление (В/дел или V/дел), масштаб по горизонтали секунды (милли- и микросекунды) на деление. Обычно осциллограф имеет 6…10 делений по горизонтали и 4…8 делений по вертикали. Центральные вертикальная и горизонтальная линии имеют дополнительные риски, делящие деление на 5 или 10 частей (рис. 13, на рис. 12 тоже видно). Риски служат для более точных измерений, они являются долями деления.

Рис. 13. Деления экрана осциллографа.

Управление обоими каналами одинаковое. Рассмотрим его на примере канала I (рис. 14).

Рис. 14. Органы управления канала I.

1. Переключатель режима входа. В верхнем положении «» на вход поступает и постоянное и переменное напряжение. Это называется «открытый вход» - то есть открытый для постоянного тока. В нижнем положении «~» на вход проходит только переменное напряжение, это позволяет измерять маленькое переменное напряжение на фоне большого постоянного, например в усилителях. Реализуется это очень просто: вход усилителя подключается через конденсатор. Это называется «закрытый вход». Учтите, что при закрытом входе очень низкие частоты (ниже 1...5 Гц) сильно ослабляются, поэтому измерять их можно только при открытом входе. В среднем положении переключателя 1 вход усилителя осциллографа отключается от входного разъема и замыкается на землю. Это позволяет при помощи ручки 7 выставить линию развертки в нужное место.

2. Входной разъем канала.

3, 4, 5, 6. Регулятор чувствительности канала вертикального отклонения (масштаба по вертикали). Переключатель 4 задает масштаб ступенчато. Задаваемые им значения нанесены рядом с ним. На выбранное значение указывает риска 5 на переключателе. На рисунке она указывает на значение 0,2 вольта/деление. Ручка 3, расположенная соосно с переключателем, позволяет плавно уменьшать масштаб в 2…3 раза. В крайнем правом положении (на рис. 14 ручка «плавно» находится именно в нем) эта ручка имеет фиксацию, тогда масштаб по вертикали в точности равен заданному переключателем 4. Значения масштабов, выделенные скобкой 6, указаны в милливольтах на деление - об этом говорит надпись «mV» внутри скобки.

7. Ручка выполняет две функции. При вращении она перемещает график канала по вертикали вверх или вниз . При «вытягивании» задает множитель масштаба по вертикали: вытянутая ручка (рис. 15) задает множитель х1, а утопленная множитель х10. Утопленное и вытянутое положения символически показаны над и под ручкой.

Рис. 15. Ручка множителя масштаба по вертикали вытянута в положение «х1».

Канал II (рис. 16) аналогичен каналу I:

1 - переключатель режима входа;
2 - входной разъем;
3 - масштаб плавно;
4 - масштаб ступенчато;
5 - перемещение луча по вертикали и множитель масштаба.

Рис. 16. Органы управления канала II.

Но второй канал имеет дополнительный переключатель 6, позволяющий инвертировать его входной сигнал. В нажатом положении канал работает как обычно, а в вытянутом - инвертируется, то есть при отрицательном входном сигнале луч движется вверх, а при положительном - вниз. Это необходимо при измерении, например, сдвига фаз.

На рис. 17 показано управление отображением каналов, которое определяется нажатием на одну из кнопок.

Рис. 17. Управление отображением каналов.

1 - Работает только канал I, канал II отключен.

2 - Оба канала отображаются одновременно (луч очень быстро переключается между каналами) и взаимное положение осциллограмм обоих каналов верное. В этом режиме можно измерять сдвиг фаз.

3 - Осциллограф показывает сумму или разность сигналов в каналах (знак второго канала определяется положением ручки 6 на рис. 16).

4 - Отображаются сигналы обоих каналов, но они независимы во времени, поэтому никакое сравнение сигналов относительно времени и сдвига фаз производить нельзя.

5 - Работает только канал II, канал I отключен.

Панель управления разверткой (рис. 18) похожа на панель управления каналом вертикального отклонения луча. Она содержит ручку 4, позволяющую сдвигать изображение влево-вправо и комбинированный регулятор (1 - ступенчато, 3 - плавно) скорости развертки (масштаба по горизонтали). Риска 2 на переключателе показывает установленное значение. Как и в каналах вертикального отклонения, переключатель скорости развертки имеет разные единицы измерения: секунды s , миллисекунды ms , микросекунды µs . Вытянутая/утопленная ручка 4 «» задает множитель скорости развертки х0,2 и х1 соответственно. Обратите внимание: на рис. 18 ручка 3 регулирования скорости развертки «плавно» установлена не в крайнее правое положение. Значит скорость развертки не равна значению, заданному переключателем 1, а меньше него (скорость движения луча меньше, а значение время/деление больше!).

Рис. 18. Органы управления разверткой

На панели управления синхронизацией (рис. 19) задается:

Рис. 19. Органы управления синхронизацией.

1 - Источник внутренней синхронизации: напряжением какого канала синхронизируется движение луча. Эта синхронизация производится входным сигналом, поэтому называется внутренней. Такой режим используется для большинства измерений. Варианты здесь такие: либо синхронизация только сигналом канала I. Либо попытка синхронизации от канала I, а если не получается, то синхронизация производится сигналом канала II. Первый вариант иногда работает немного лучше, поэтому надо стараться, чтобы сигнал первого канала был достаточно большой для стабильной синхронизации. В подавляющем большинстве случаев для нормальной работы следует выбирать именно этот режим синхронизации, включив кнопку «I».

2 - Внешняя синхронизация. Движение луча синхронизируется импульсами, подаваемыми со специального внешнего источника на вход синхронизации осциллографа. Такой режим иногда требуется для исследования специфических сигналов. Если внешнего источника синхронизации нет, то получить устойчивое изображение невозможно. Кнопки «0,5-5» и «5-50» задают диапазон входных напряжений от внешнего источника синхронизации. Кнопка «X-Y» совместно с кнопкой «II X-Y» управления отображением каналов (рис. 17) подает сигнал канала II на пластины горизонтальной развертки. В этом режиме можно наблюдать фигуры Лиссажу.
3 - Ручка «Уровень синхронизации». Задает напряжение синхронизации (рис. 5). В нажатом положении этой ручки (как на рисунке) развертка автоматическая. При этом движение луча будет происходить даже если синхронизации не произойдет. Луч задерживается в начале движения на некоторое время до момента синхронизации, но через некоторое время все равно начинает движение. Это «мягкий» режим, более удобный для работы, так как луч всегда остается видимым. В вытянутом положении ручки включается ждущая развертка. В этом режиме луч не начнет движения до тех пор, пока не произойдет синхронизации. Если синхронизации не происходит, луч не движется. Такой режим хорошо подходит для наблюдения непериодических сигналов. Влияние этой ручки на изображение показано на рис. 4 и 5.

4 - «Полярность» синхронизации. На самом деле знаки «+» и «-» означают несколько другое. В положении «+» синхронизация происходит по фронту, т.е. в тот момент, когда входное напряжение достигает заданного (ручкой «Уровень синхронизации») значения при нарастании входного напряжения (изменении от «-» к «+»), рис. 20. В положении «-» синхронизация происходит по спаду - при убывании входного напряжения (изменении от «+» к «-»). В осциллографе в цепи синхронизации используются две различные схемы: одна определяет равно ли входное напряжение заданному и если равно - запускает движение луча. Это напряжение задается ручкой «Уровень синхронизации». Вторая схема определяет, как при этом изменяется входное напряжение - возрастает или убывает. И соответственно разрешает первой схеме сработать.

5 - Режим входа синхронизации. Относится как к внешней, так и ко внутренней синхронизации. В положении «~» вход закрытый, и синхронизация происходит только от переменного напряжения. В положении «» вход открытый, и на срабатывание схемы синхронизации действует и переменное напряжение, и постоянное. Режим «НЧ» то же самое, но сигнал попадает на цепь синхронизации через фильтр низких частот, обрезающий высокочастотные помехи. Это режим есть не во всех осциллографах.

6 - Вход для подачи сигнала внешней синхронизации.

Рис. 20. «Полярность» синхронизации.

4. Измерения осциллографом

Измерения производятся визуально и их погрешность получается довольно высокой. Кроме того, напряжение развертки имеет невысокую линейность, поэтому погрешность измерения частоты и сдвига фаз может достигать 5%. Для минимизации погрешности, изображение должно иметь размер 80…90% от размеров экрана. При измерении напряжения и частоты (временных интервалов) необходимо ручки плавной регулировки усиления входного сигнала и скорости развертки необходимо установить в крайнее правое положение.

4.1. Измерение напряжения

Для измерения напряжения используется известное значение масштаба по вертикали. Перед началом измерения необходимо замкнуть накоротко входные клеммы осциллографа (или установить переключатель режима входа в положение ) и ручкой установить линию развертки на горизонтальную линию сетки экрана, чтобы была возможность правильно определить высоту осциллограммы, рис. 21а.

После этого на вход подается исследуемый сигнал (или переключатель режима входа устанавливается в одно из рабочих положений). На экране появляется график функции сигнала, рис. 21б.

Рис. 21. Измерение напряжения (скриншот цифрового осциллографа): а - подготовка; б - измерение.

Для того чтобы точнее измерить высоту графика, осциллограмма сдвигается ручкой так, чтобы точка, в которой измеряется амплитуда попала на центральную вертикальную линию, имеющую градуировку в долях деления (рис. 22). Получаем: чувствительность канала вертикального отклонения = 1 В/дел, размер осциллограммы 2,6 деления, следовательно амплитуда сигнала 2,6 вольт.

Рис. 22. Определение амплитуды сигнала.

Продемонстрируем измерение напряжения на самом осциллографе. Максимум напряжения имеет величину 3,4 деления (рис. 23). Определение масштаба по вертикали показано на рис. 24. Ручка «плавно» установлена в крайнее правое положение. Риска на переключателе чувствительности показывает 0,5 вольт/деление. Множитель масштаба установлен в положение х10 (утоплен). Следовательно измеряемое напряжение равно:

Рис. 23. Определение амплитуды на осциллографе С1-83.

Рис. 24. Определение масштаба по вертикали на осциллографе С1-83.

4.2. Измерение частоты

Осциллограф позволяет измерять временные интервалы, в том числе и период сигнала. Частота сигнала обратно пропорциональна его периоду. Период сигнала можно измерять в различных частях осциллограммы, но наиболее удобно и точно измерять его в точках пересечения графиком оси времени. Поэтому перед измерением линию развертки необходимо установить на центральную горизонтальную линию сетки экрана (рис. 21а).

Рис. 25. Измерение периода сигнала.

При помощи ручки начало периода совмещается с вертикальной линией сетки, рис. 25 (лучше всего начало периода совмещать с самой левой вертикальной линией экрана, тогда точность будет максимальна). Период сигнала, показанного на рис. 25 равен 6,8 делений. Скорость развертки - 100 мкс/деление (поскольку греческая буква µ, означающая «микро», не всегда доступна для отображения, ее часто заменяют латинской буквой u , сходной по начертанию). Тогда период сигнала

и его частота:

Обратите внимание, что на рисунках 22 и 25 показан один и тот же сигнал, но при различных значениях скорости развертки. Определение частоты по рис. 22 дает большее значение погрешности (точное значение частоты 1,459 кГц). Поэтому наиболее точные измерения получаются, если максимально растянуть изображение по горизонтали. И еще. На рис. 25 длительность периода сигнала чуть-чуть больше, чем 6,8 делений. Раз период больше, частота сигнала на самом деле чуть-чуть меньше, чем та, которую мы получили: реально 1,459 кГц, а у нас 1,47 кГц. На самом деле погрешность измерения меньше одного процента - это высокая точность. Такую точность обеспечивает цифровой осциллограф, у которого развертка линейна. В аналоговом осциллографе погрешность измерения частоты, скорее всего, была бы выше.

4.3. Измерение сдвига фаз

Сдвиг фаз показывает взаимное расположение двух колебательных процессов во времени. Но его измеряют не в единицах времени (которые откладываются по горизонтальной оси), а в долях периода сигнала (т.е. в единицах угла). В этом случае одинаковому взаимному расположению сигналов будет соответствовать одинаковый фазовый сдвиг, независимо от периода и частоты сигналов (т.е. независимо от реального масштаба графиков по оси времени). Поэтому наибольшая точность измерений получается, если растянуть период сигнала на весь экран.

Поскольку в аналоговом осциллографе графики сигнала обоих каналов имеют одинаковый цвет и одинаковую яркость, то для того, чтобы их различать между собой, рекомендуется сделать их разной амплитуды. При этом напряжение, измеряемое каналом I прибора, лучше делать большим - в этом случае синхронизация будет лучше «держать» изображение. Подготовка к измерениям производится так (см. рис.26, на нем для большей наглядности напряжение и ток показаны разными цветами):

Ручками обоих каналов их линии развертки устанавливаются на среднюю линию сетки экрана (при отсутствии сигналов на входах). Ручками регулировки усиления каналов вертикального отклонения (ступенчато и плавно) сигнал 1-го канала устанавливается большой амплитуды, а 2-го канала - меньшей амплитуды. Ручками регулировки скорости развертки устанавливается такая ее скорость, чтобы на экране отображался примерно один период сигнала. Ручкой «Уровень синхронизации» добиваются того, чтобы график напряжения начинался с оси времени (с линии развертки) - точка А. Ручкой добиваются того, чтобы график напряжения начинался с крайней левой вертикальной линии сетки экрана - точка А. Ручками «Скорость развертки» (ступенчато и плавно) добиваются того, чтобы период графика напряжения заканчивался на крайней правой вертикальной линии сетки экрана. Повторяют пункты 4…6 до тех пор, пока период графика напряжения не будет растянут на весь экран, причем его начало и конец должны совпадать с линией развертки (рис. 26).

Прежде, чем измерять величину сдвига фаз, необходимо определить, какой из сигналов (напряжение или ток) опережает, а какой отстает. От этого зависит знак угла сдвига фаз φ. На рис. 26а ток отстает от напряжения - начало его периода расположено во времени позже, чем начало периода напряжения (начало периода напряжения в точке А, а периода тока - в точке Б). Ток начинается позже, следовательно, он отстает, а напряжение опережает. Этой ситуации соответствуют положительные значения угла сдвига фаз. На рис. 26б ток опережает, а напряжение отстает. Поскольку начало периода тока на экране не отображается, то сравниваются окончания первого полупериода: первым к нулю вернется тот график, который начался раньше (точка Г наступает раньше во времени, чем точка В). Угол сдвига фаз при этом отрицателен.

Рис. 26. Ток отстает от напряжения, φ>0 (а); ток опережает напряжение, φ<0 (б).

Модуль угла сдвига фаз φ это расстояние между началами или между концами периода (положительного полупериода) сигналов в делениях сетки экрана (рис. 27). Далее значение модуля φ находится из пропорции, учитывая, что один полный период любого колебания равен 360 градусов:

здесь N - число делений сетки, занимаемых одним периодом сигнала,
α - число делений сетки между началами периодов (концами положительного полупериода).
В примере на рис. 18 модуль φ в обоих случаях равен:

Следует учитывать, что

Рис. 27. Измерение угла сдвига фаз.

В принципе, величину сдвига фаз можно измерить и в конце периода (точки Д и Е на рис. 26), но в правой части экрана линейность напряжения развертки наихудшая, поэтому погрешность измерения будет максимальна.
Если сдвиг фаз равен нулю (в цепи только активная нагрузка или происходит резонанс), то напряжение и ток будут начинаться и заканчиваться одновременно, рис. 28.

Рис. 28. Осциллограмма при сдвиге фаз, равном нулю.

Электронный осциллограф используют для исследования быстропеременных периодических процессов. Например, с помощью осциллографа можно измерить силу тока и напряжение, рассмотреть их изменение во времени. Можно измерять и сравнивать частоты и амплитуды различных переменных напряжений. Кроме того, осциллограф при применении соответствующих преобразователей позволяет исследовать неэлектрические процессы, например, измерять малые промежутки времени, периоды колебаний и т. д. Достоинствами электроннолучевого осциллографа является его высокая чувствительность и безинерционность действия, что позволяет исследовать процессы, длительность которых порядка 10 –6  10 –8 с.

Основным элементом электронного осциллографа является электронно-лучевая трубка (ЭЛТ). Схематическое устройство такой трубки показано на рис . 3. Электронно-лучевая трубка состоит из ряда металлических электродов, помещенных в стеклянный баллон. Из баллона выкачан воздух до давления порядка 10 –6 мм рт. ст. На передней части баллона нанесен тонкий слой флуоресцирующего. Под воздействием электронного луча флуоресцирующий экран (8) начинает светиться.

Рассмотрим электроды электронно-лучевой трубки в порядке их следования. Нить накала (1), по которой идет переменный ток, разогревает катод (2). Из катода, вследствие термоэлектронной эмиссии, вылетают электроны.

Термоэлектронная эмиссия - это явление испускания электронов нагретыми телами.

За катодом расположен управляющий электрод (3) в виде сетки или цилиндра с отверстиями. Работа его аналогична работе управляющей сетки в электронной лампе. При изменении потенциала управляющего электрода относительно катода изменяется интенсивность электронного потока, тем самым проводится изменение яркости светового пятна на экране трубки.

Первый и второй аноды (4 и 5), в виде цилиндров с диафрагмами, обеспечивают необходимую скорость движения электронов и создают электрическое поле определенной конфигурации, фокусирующее электронный поток в узкий пучок (луч).

Затем сфокусированный электронный луч проходит между двумя парами взаимно перпендикулярных отклоняющих пластин. При разных потенциалах на одной из пар отклоняющих пластин луч отклоняется в сторону пластины с большим потенциалом. Отклонение луча пропорционально приложенному напряжению. Вертикальные пластины (7) обеспечивают горизонтальное перемещение электронного луча по экрану, а горизонтальные (6) дают вертикальное перемещение луча.

1 - нить накала, 2 - катод, 3 - управляющий электрод, 4 - первый анод, 5 - второй анод, 6- пластины вертикального отклонения, 7 - пластины горизонтального отклонения, 8 - флуоресцирующий экран

Блок-схема осциллографа представлена на рис. 4. Осциллограф состоит из электронно-лучевой трубки (ЭЛТ), генератора напряжения развертки и двух усилителей. Один из усилителей, предназначенный для усиления исследуемого напряжения, обычно называют вертикальным усилителем, так как напряжение с него подается на горизонтально расположенные пластины электронно-лучевой трубки, которые обеспечивали вертикальное отклонение луча по экрану. Напряжение от второго усилителя подается на вертикальные пластины, обеспечивающие горизонтальное перемещение луча. Этот усилитель называется горизонтальным. Напряжение генератора развертки подается на пластины через горизонтальный усилитель.

Для исследования характера изменения электрических сигналов во времени используют специально вмонтированное в осциллограф устройство, называемое генератором развертки . Этот генератор вырабатывает пилообразное напряжение (рис .4), которое за время
линейно нарастает от нуля до максимального значения
, а затем за очень малое время
падает до нуля. Частоту пилообразного напряжения можно изменять с помощью рукоятки "частота развертки ". Пилообразное напряжение подается обычно на вертикальные пластины. При этом луч откланяется по горизонтали на величину пропорциональную значению пилообразного напряжения в данный момент. Так как это напряжение линейно возрастает со временем, то по горизонтали луч движется равномерно, что соответствует ходу времени, и, значит, смещение луча по горизонтали пропорционально времени. Поэтому при включенном генераторе развертки горизонталь считают осью времени.

При малых частотах развертки можно увидеть поступательное равномерное движение точки по горизонтали. Если частота развертки большая, то на экране видна только горизонтальная линия. Это происходит в силу инерции зрительного восприятия и послесвечения трубки, т.е. зрительно при больших частотах мы не успеваем отметить последовательное перемещение луча по экрану слева направо при увеличении напряжения. От нуля до максимума и почти мгновенное возвращения луча в исходное положение. На каждом следующем "зубце пилы" луч движется по одному и тому же следу слева направо по горизонтали и обратно, и повторяется это с частотой равной частоте развертки.

Чтобы увидеть, как меняется со временем исследуемое напряжение, надо одновременно подать на"Вход х " напряжение развертки, а на "Вход у " исследуемый сигнал
. Пусть к моменту времениисследуемый сигнал достигает значения
, а напряжение развертки значения
. Луч, участвуя одновременно в двух взаимно перпендикулярных движениях: по горизонтали (под действием напряжения развертки) и по вертикали (под действием исследуемого напряжения
), переместится в точку(рис.5 ). Если исследуемое напряжение меняется по гармоническому закону и его период совпадает с периодом развертки
, то в течение времени
на экране луч "выпишет" один период синусоиды. На каждом следующем зубце пилы при достижении напряжением значений
,
,
и т.д. электронный луч будет попадать соответственно в те же точки,,и т.д. синусоиды, что и на первом "зубце".

Изображение на экране осциллографа будет неподвижным, если период развертки равен или в целое число раз больше периода исследуемого сигнала. При невыполнении этого условия (часто случающегося из-за нестабильности частоты генератора развертки) изображение будет "плыть" по экрану.

Для измерения периода надо на горизонтальные пластины подать исследуемое напряжение и включить генератор развертки "Вход х ", подающий пилообразное напряжение на вертикальные пластины. Вращая ручку "генератор развертки ", получить на экране устойчивую картину – синусоиду. Посчитать количество клеток периода синусоиды и, помножив на цену деления генератора развертки, получить период колебаний.

Электронный осциллограф (ЭО) — устройство, с помощью которого наблюдают, исследуют и измеряют амплитуды электрических сигналов и их временные параметры. Такой прибор является наиболее распространенным радиоизмерительным агрегатом, благодаря которому можно увидеть происходящие электрические процессы вне зависимости от момента появления импульса и его продолжительности. По передаваемому на экран изображению возможно с точностью определить амплитудные колебания исследуемого сигнала и их длительность на любом участке сети.

Осциллографы, работающие на основе электронно-лучевой трубки — громоздкие и маломобильные агрегаты. Однако они отличаются высокой точностью измерений. Такие приборы способны быстро обрабатывать входящие сигналы. Они имеют широкий частотный диапазон и отличную чувствительность.

Сфера использования ЭО

Область применения осциллографов обширна. С их помощью исследователь сможет наблюдать формы электрических импульсов, благодаря чему этот прибор стал незаменимым «помощником» в наладочных работах электронной аппаратуры. Возможности ЭО:

  • определение напряжения и временных параметров сигнала и его частоты;
  • наблюдение формы сигнала;
  • отслеживание искажения импульсов на любом участке сети;
  • определение сдвига фаз;
  • измерение силы тока, сопротивления.

При измерении значений напряжения в электрических цепях осциллограф практически не потребляет энергию и работает в широком диапазоне частот.

Электронный осциллограф используется в исследовательских лабораториях, диагностических автосервисах, в мастерских по ремонту электроники. Благодаря такому прибору можно оперативно определить причину неисправности микросхемы.

Устройство электронных осциллографов

Несмотря на широкий ассортимент радиоизмерительных приборов, схема осциллографа вне зависимости от модели и конструктивных особенностей агрегатов, примерно одна и та же. Наиболее важные составляющие любого ЭО:

  • электронно-лучевая трубка (ЭЛТ);
  • каналы отклонения (вертикальный и горизонтальный);
  • блок управления;
  • калибраторы;
  • источник питания.

Главная часть ЭО — вакуумная ЭЛТ, которая представляет собой вытянутую емкость из стекла. В ней находятся комплекс электродов (называемый электронной пушкой) и люминофорный экран, благодаря которому в результате попадания электронов, можно наблюдать биолюминесценцию. В вакуумной трубке также находится катод, модулятор, 2 анода и пара отклоняющих пластин. Горизонтальный канал содержит генератор развертки, синхронизирующее устройство и усилитель. В канал вертикального отклонения входит кабель соединения, входной тумблер, а также делители напряжения.

Блок управления предназначается для подсветки прямого хода развертки и необходим для погашения электронного луча в процессе возвратного хода. Калибратор — устройство, выполняющее функцию генератора напряжения. Он предназначен для высокоточного определения частоты и амплитуды импульсных сигналов. Питающий блок обеспечивает электропитание всех узлов и механизмов ЭО. На блок производится подача напряжения 220В, после чего происходит его преобразование и направление на накаливающие нити, генераторные усилители и иные составляющие прибора.

Особенности функционирования электронных осциллографов

Функционирование любых моделей ЭО предполагает превращение исследуемых импульсов в наглядный рисунок, отображаемый на экран вакуумной ЭЛТ. Испускание электронов осуществляется при помощи электронной пушки, которая расположена противоположно концу лучевой трубки. Между системой электродов и экраном расположен модулятор, посредством которого происходит регулировка потока электронов, а также 2 пары пластин, позволяющих производить отклонение электронного луча по горизонтали или вертикали.

Принцип работы ЭЛТ заключается в следующем: на нить накаливания подается переменное, а на модулятор — постоянное напряжение. На отклоняющиеся пластины производится подача постоянного напряжения, за счет чего происходит смещение потока электронов в стороны, и переменного, необходимого для создания линии развертки. На ее длину влияет значение амплитуды пилообразного напряжения. При единовременной подаче напряжения на одну и вторую пару пластин на экране отображается синусоидальная линия развертки исследуемого импульса.

Выбор ЭО в зависимости от назначения

Самыми распространенными моделями электронных осциллографов считаются универсальные устройства. В них подача исследуемого сигнала осуществляется через аттенюаторы и усилители на вертикально отклоняющуюся ЭЛТ. Горизонтальный уклон происходит за счет генератора развертки. Такие приборы позволяют исследовать электрические импульсы в широком диапазоне частот и амплитуд. Благодаря этим моделям осциллографов возможно измерение длительности поступающего сигнала от долей секунд.

Использование стробоскопических электронных осциллографов позволяет проводить исследование форм и измерять амплитудные и временные параметры периодически возникающих сигналов. Такие приборы необходимы, чтобы исследовать переходные процессы в быстродействующей полупроводниковой технике, микромодульных и интегральных устройствах. При помощи этого измерительного прибора можно наблюдать за повторяющимися сигналами с длительностью в доли секунд.

Специальные электронно-лучевые осциллографы предназначены для решения конкретных задач. Чаще всего такие приборы применяют для исследования телевизионных и радиолокационных сигналов. Агрегаты специального назначения содержат в своем устройстве специфические узлы.

Также широко распространены запоминающие осциллографы. Они применяются при необходимости исследования медленных процессов и одиночных импульсов. Такие модели ЭО оснащены специальным устройством с памятью, благодаря которому возможно сохранить полученные данные на определенное время. В случае необходимости сигнал можно воспроизвести для его исследования и последующей обработки.

Для наблюдения за гармоничными или импульсными сигналами, протекающими в режиме реального времени за единицы наносекунд, используют скоростные ЭО. Оперативная обработка импульсов такими устройствами достигается за счет применения ЭЛТ с бегущей волной. У этих приборов нет генерирующего усилителя в вертикальном канале отклонения.

Огромным спросом также пользуются ЭО со сменными блоками. Меняя блок на приборе можно изменять его характеристики и основные рабочие параметры, такие как:

  • полоса пропускания;
  • коэффициент развертки;
  • значение отклонения.

При помощи смены блока возможно изменение функциональных возможностей устройства.

Выбор ЭО в зависимости от числа каналов


Производители радиоизмерительных приборов выпускают осциллографы, которые могут быть одно, двух или многолучевыми, а также двух и многоканальными. Однолучевой ЭО — агрегат, имеющий одно входное устройство. Самыми распространенными считаются двухлучевые и двухканальные приборы. Они предназначены для одновременного наблюдения и исследования на одном экране ЭЛТ двух импульсных сигналов.

Двухлучевые осциллографы удобно использовать при необходимости сопоставления импульсных сигналов на выходе и входе, для наблюдения за разными преобразователями и для решения других задач. Эти электронные устройства имеют 4 рабочих режима:

  1. Одноканальный, при активации которого работает только один из двух каналов.
  2. Чередования, позволяющего включать по очереди один и второй канал после каждой развертки.
  3. Прерывания, позволяющего активировать оба канала. Однако их переключение происходит с неодинаковой частотой.
  4. Сложения, благодаря которому оба канала функционируют при одной нагрузке.

Двухканальные и двулучевые устройства имеют свои достоинства и недостатки. Преимущества первых - бюджетная цена и отличные технические характеристики. Достоинства вторых заключаются в возможности исследования двух сигналов как раздельно, так и вместе. Многолучевые электронные приборы произведены по принципу двухлучевых. Сколько лучей имеет осциллограф, столько же у него имеется и сигнальных входов.

Достоинства электронных осциллографов

Электронные осциллографы имеют ряд важных преимуществ:

  • оперативное измерение осциллографом амплитуды сигнала;
  • высокая устойчивость изображения;
  • повышенная чувствительность;
  • огромные функциональные возможности практического применения.

Измерения, сделанные ЭО, имеют исключительную наглядность. С их помощью можно рассмотреть любые электрические процессы. По изображению на ЭЛТ возможно произвести измерение и сравнение токов и напряжения вне зависимости от формы, а также произвести оценку их амплитудных значений, фазовых характеристик различной техники. Осциллограф — простой прибор с высокой точностью измерений. Наличие огромного ассортимента таких радиоизмерительных устройств позволит подобрать прибор для конкретных целей.

Особенности подключения ЭО

Подключение радиоизмерительного прибора к источнику исследуемых сигналов необходимо производить при помощи проводов и коаксиального кабеля. Для наблюдения за непрерывными низко и среднечастотными импульсами следует использовать соединительные провода. С целью исследования импульсов и высокочастотных напряжений целесообразно применить кабели высокой частоты. Чтобы ослабить влияние входной цепи, прибор подключают при помощи повторителя. Такое приспособление имеет большое активное сопротивление, небольшую входную емкость, равнозначные амплитудные и частотные параметры, малый коэффициент передачи.

В случаях измерения напряжения с высоковольтным импульсом между выходом источника сигнала и входом в радиоизмерительный прибор необходимо включить делитель напряжения. Для того чтобы избежать искажений при выдаче коротких импульсов, целесообразно применять высокочастотные кабели, имеющие минимальную длину. При необходимости получения осциллограмм с импульсами тока, в исследуемую цепь следует включить дополнительный резистор с малым значением индуктивности.

▌Старая статья о аналоговом осциллографе
Рано или поздно любой начинающий электронщик, если не бросит свои эксперименты, то дорастет до схем, где нужно отслеживать не просто токи и напряжения, а работу схемы в динамике. Особенно это часто нужно в различных генераторах и импульсных устройствах. Вот тут без осциллографа делать нечего !

Страшный прибор, да? Куча ручек, каких то кнопочек, да еще экран и нифига не понятно что тут да зачем. Ничего, сейчас исправим. Сейчас я тебе расскажу как пользоваться осциллографом.

На самом деле тут все просто — осциллограф, грубо говоря, это всего лишь… вольтметр ! Только хитрый, способный показывать изменение формы замеряемого напряжения.

Как всегда, поясню на отвлеченном примере.
Представь, что ты стоишь перед железной дорогой, а мимо тебя с бешеной скоростью мчится бесконечный поезд состоящий из совершенно одинаковых вагонов. Если просто на них стоять и смотреть, то ничего кроме размытой фигни ты не увидишь.
А теперь ставим перед тобой стенку с окошком. И начинаем открывать окошко только тогда, когда очередной вагон будет в том же положении, что и предыдущий. Так как у нас вагоны все одинаковые, то тебе совершенно необязательно видеть один и тот же вагон. В результате картинки разных, но идентичных вагонов будут выскакивать перед твоими глазами в одном и том же положении, а значит картинка как бы остановится. Главное это синхронизировать открытие окошка со скоростью поезда, чтобы при открытии положение вагона не менялось. Если скорость не совпадет, то вагоны будут «двигаться» либо вперед, либо назад со скоростью, зависящую от степени рассинхронизации.

На этом же принципе построен стробоскоп — девайс, позволяющий разглядывать быстро движущиеся или вращающиеся хреновины. Там тоже шторка быстро-быстро открывается и закрывается.

Так вот, осциллограф это тот же стробоскоп, только электронный . А показывает он не вагоны, а периодические изменения напряжения. У той же синусоиды, например, каждый следующий период похож на предыдущий, так почему бы не «остановить» его, показывая в один момент времени один период.

Конструкция
Делается это посредством лучевой трубки, отклоняющей системы и генератора развертки.
В лучевой трубке пучок электронов попадая на экран заставляет светится люминофор, а пластины отклоняющей системы позволяют гонять этот пучок по всей поверхности экрана. Чем сильней напряжение, приложенное к электродам, тем больше отклоняется пучок. Подавая на пластины Х пилообразное напряжение мы создаем развертку . То есть луч у нас движется слева-направо, а потом резко возвращается обратно и продолжает снова. А на пластины Y мы подаем изучаемое напряжение.

Принцип работы
Дальше все просто, если начало появления периода пилы (луч в крайне левом положении) и начало периода сигнала совпадают, то за один проход развертки нарисуется один или несколько периодов измеряемого сигнала и картинка как бы остановится. Меняя скорость развертки можно добиться того, что на экране вообще останется только один период — то есть за один период пилы пройдет один период измеряемого сигнала.

Синхронизация
Синхронизировать пилу с сигналом можно либо вручную, подстраивая ручкой скорость так, чтобы синусоида остановилась, а можно по уровню . То есть мы указываем при каком уровне напряжения на входе нужно запустить генератор развертки. Как только напряжение на входе превысит уровень, так сразу же запустится генератор развертки и выдаст нам импульс.
В итоге, генератор развертки выдает пилу только тогда, когда надо. В этом случае синхронизация получается полностью автоматической. При выборе уровня следует учитывать такой фактор, как помехи. Так что если взять слишком низкий уровень, то мелкие иголки помех могут запустить генератор когда не нужно, а если взять уровень слишком большой, то сигнал может под ним пройти и ничего не случится. Но тут проще покрутить ручку самому и сразу же все станет понятно.
Также сигнал синхронизации можно подать и с внешнего источника.

В топку теорию, переходим к практике.
Показывать буду на примере своего осциллографа, спертого когда то давно с оборонного предприятия КБ «Ротор»:). Обычный осцил, не шибко навороченный, но надежный и простой как кувалда.


Итак:
Яркость, фокус и освещение шкалы думаю не требуют пояснений. Это настройки интерфейса.

Усилитель У и стрелочки вверх вниз. Эта ручка позволяет гонять изображение сигнала вверх или вниз. Добавляя ему дополнительное смещение. Зачем? Да иногда не хватает размера экрана, чтобы вместить весь сигнал. Приходится его загонять вниз, принимая за ноль не середину, а нижнюю границу.

Ниже идет тумблер переключающий ввод с прямого, на емкостный. Этот тумблер в том или ином виде есть на всех без исключения осциллографах.

Важная вещь! Позволяет подключать сигнал к усилителю либо напрямую, либо через конденсатор. Если подключить напрямую, то пройдет и постоянная составляющая и переменная . А через кондер проходит только переменная .

Например, надо нам посмотреть на уровень помех блока питания компа. Напряжение там 12 вольт, а величина помех может быть не более 0.3 вольт. На фоне 12 вольт эти жалкие 0.3 вольт будут совсем незаметны. Можно, конечно увеличивать коэффициент усиления по Y , но тогда график вылезет за экран, а смещения по Y не хватит, чтобы увидеть вершину. Тогда нам нужно лишь врубить конденсатор и тогда те 12 вольт постоянки осядут на нем, а в осциллограф пройдет только переменный сигнал, те самые 0.3 вольта помехи. Которые можно усилить и разглядеть в полный рост.

Далее идет коаксиальный разъем подключения щупа . Каждый щуп содержит в себе сигнал и землю . Землю обычно сажают на минус или на общий провод схемы, а сигнальным тычут по схеме. Осциллограф показывает напряжение на щупе относительно общего провода. Чтобы понять где сигнальный, а где земля достаточно взять за них рукой по очереди. Если возьмешься за общий, то на экране по прежнему будет пульс трупа. А если взяться за сигнальный, то увидишь кучу срача на экране — наводки на твое тело, служащее в данный момент антенной. На некторых щупах, особенно на современных осциллографах, внутри встроен делитель напряжения 1:10 или 1:100 , который позволяет воткнуть осциллограф хоть в розетку, без риска его спалить. Включается и выключается он тумблером на щупе.

Еще почти на каждом осциллографе есть калибровочный выход . На котором ты всегда можешь найти прямоугольный сигнал частотой 1Кгц и напряжением около полувольта . В зависимости от модели осцила. Используется для проверки работы самого осциллографа, ну иногда и в тестовых целях пригождается:)

Две здоровенные крутилки Усиление и Длительность

Усиление служит для масштабирования сигнала по оси Y . Там же показано сколько вольт на деление в итоге покажет.
Скажем, если у тебя стоит 2 вольта на деление, а сигнал на экране достигает высоты две клеточки размерной сетки, значит амплитуда сигнала равна 4 вольта.

Длительность определяет частоту развертки. Чем короче интервал, чем больше частота, тем более высокочастотный сигнал ты сможешь разглядеть. Тут клеточки проградуированы уже в милли и микросекундах. Так что по ширине сигнала ты можешь посчитать сколько он клеток, а умножив его на масштаб по оси Х получишь длительность сигнала в секундах. Также можно посчитать длительность одного периода, а зная длительность легко найти частоту сигнала f=1/t

Верхняя пипка на крутилках позволяет менять масштаб плавно. Обычно у меня она стоит на щелчке, чтобы я всегда четко знал какой у меня масштаб.

Также там есть вход Х на который можно подать свой сигнал, вместо пилы развертки. Таким образом осциллограф может послужить телевизором или монитором, если собрать схему которая будет формировать изображение.

Крутилка с надписью Развертка и стрелочками влево и вправо позволяет гонять график по экрану влево и вправо. Удобно иногда бывает, чтобы подогнать нужный участок под деления сетки.

Блок синхронизации.

Ручка уровня — задает уровень от которого будет стартовать генератор пилы.
Переключатель со внутренней на внешнюю , позволяет подать на вход синхроимпульсы с внешнего источника.
Переключатель с надписью +/- переключает полярность уровня. Есть не на всех осциллографах.
Ручка стабильность — позволяет вручную попытаться подобрать скорость синхронизации.

Быстрый старт.
Итак, включил ты осцил. Первое что нужно сделать это замкнуть сигнальный щуп на свой же земляной крокодил. При этом на экране должен появится «Пульс трупа». Если не появился, то покрути ручки стабилизации и смещений и уровня — возможно он просто спрятался за экран или не запустился из-за недостаточного уровня.

Как только появилась полоса, то выстави крутилками смещения её на ноль. Если у тебя аналоговый осцил, особенно если древний, то дай ему прогреться. У моего после включения ноль плавает еще минут пятнадцать.

Дальше выстави предел измерений по напряжению . Бери с запасом, если что уменьшишь. Теперь если земляной провод осциллографа приложишь к минусу батарейки, а сигнальный к плюсу, то увидишь как график скакнет на полтора вольта. Кстати, старые осциллографы зачастую начинают подвирать, поэтому по эталонному источнику напряжения полезно посмотреть насколько точно он отображает напряжение.

Выбор осциллографа.
Если ты только начал, то тебе подойдет любой . Крайне желательно если он будет двухканальным . То есть у него будет два щупа и две крутилки Усиления, для первого и второго канала, что позволяет одновременно получить два графика.
Вторым по важности критерием осциллографа является частота. Максимальная частота сигнала которую он может уловить. Мне пока хватало 1МГц на большее не замахивался. Те осциллографы, что продаются в магазинах уже имеют частоту от 10МГц и выше. Самый дешевый осциллограф который я видел стоил 5 тысяч рублей — . Двухканальный стоит уже 10 тысяч, ну а я нацелился взял себе за килобакс. Разные запросы — разные игрушки. Но, повторюсь, для начала хватит и 1МГц, и хватит надолго. Так что найди себе хоть какой нибудь осциллограф. А там поймешь что тебе надо.