Обвязка радиаторов отопления в квартире. Надежные и эффективные системы отопления: подключение радиаторов. Особенности монтажа приборов отопления

Как подключаются радиаторы отопления? — какая обвязка этих приборов…

  • Радиатор должен отключаться кранами на подаче и обратке. Отопление выходит со строя, когда на улице 30 градусов мороза, для ремонта одного радиатора систему отопления сливать недопустимо…
  • Схема подключения должна быть такой, чтобы жидкость циркулировала через всю площадь радиатора.

Как разместить радиатор

При установке батарей нужно оставить зазоры. Между стеной и радиатором нужно оставить не меньше 3 см, чтобы не создавать сопротивления потоку воздуха. От пола — не меньше 15 см, до подоконника — не менее 10 см.

Не желательно помещать радиатор в ниши или закрывать экранами. В таком случае будет теряться полезная отдача тепла из-за ухудшения циркуляции воздуха. Причем можно потерять и 50% мощности радиатора, если поместить его в кожух.

Схемы включения

Схемы подключения общеизвестны. Лучшая – диагональная, с ней реализуется условно до 100% от мощности, которую способен развить прибор.

Возвратноточная (боковая) допустима только лишь при длине прибора не более 1,0 метра, в этом случае КПД уменьшается не более чем на 10%. Другие же схемы не желательны, — большая потеря КПД при нижнем подключении, например…

Что нужно устанавливать

Каждый радиатор снабжается пробками для перехода с диаметра секций на диаметр трубопровода. В большинстве своем радиаторы подключают на резьбу 1/2 дюйма, что соответствует трубам 16 мм металлопластика и 20 мм (наружный) полипропилена. Но могут подключаться и на 3/4 дюйма.

Приобретается соответствующий комплект пробок к радиатору, они устанавливаются на всех торцах на резиновых уплотнениях с применением мягкого ключа для затяжки, чтобы не испортить эмаль.

Воздушный кран Маевского

Каждый радиатор снабжается воздушным краном Маевского, который устанавливается в верхней свободной пробке. Радиатор на креплениях устанавливается или горизонтально, или с небольшим возвышением в сторону крана Маевского.

Обязательное отключение – простейшая обвязка

Простейшая обвязка радиаторов – установка отключающих шаровых кранов. Регулировать поток ими не допустимо (делать не полное открытие), ввиду того, что они быстро выйдут со строя.

Зачем делать байпас

Байпас между подачей и обраткой необходим только при однотрубной схеме отопления, при последовательном включении радиаторов. Например, в многоквартирных домах, к стояку радиаторы подключаются обязательно с байпасом, чтобы отключение одного радиатора мало влияло на всю систему и не останавливало бы циркуляцию теплоносителя по системе.

Как уплотнять резьбовые соединения

При подключении радиаторов металлические резьбовые соединения категорически не рекомендуется уплотнять фум-лентой. Она дает течь при каком либо провороте в соединении. Все должно быть закручено со 100% гарантией надежности.

Это обеспечивается льняным волокном или сантехнической нитью. Резьба обматывается не слишком тонким слоем, намотка смазывается сантехнической смазкой (допускается постным маслом), закручиваине делается ключами с умеренным натягом.

Типичная обвязка радиатора в регулируемой системе

Подключение шаровыми кранами делается там, где требуется только два режима работы радиатора – «включил-выключил».

  • Но в некоторых радиаторах требуется регулировка потока, чтобы отбалансировать всю систему. Например, в тупиковой схеме на первом радиаторе уменьшают расход, если количество приборов в тупике 5 шт. и более. Поэтому на таких радиаторах на обратке ставят балансировочный клапан вместо обычного шарового крана.

  • В некоторых комнатах радиаторы возможно понадобится периодически отключать или уменьшать их мощность, для экономии энергии. Такие приборы, мощность которых регулируется, снабжаются на подаче настроечным винтовым краном с помощью которого можно плавно изменять расход теплоносителя.

Обвязка радиаторов также включает уголки, тройники…, чтобы направить трубы, например, к стене… Наличие таких фитингов и их расположение определяется в каждом конкретном случае.

Наличие балансировочных клапанов и кранов расхода на отдельных радиаторах определяется при составлении схемы отопления….

Автоматизированное управление радиатором

Радиатор может управляться автоматически и поддерживать в комнате заданную температуру. Поможет в этом термоголовка, которая управляет клапаном так, чтобы поддерживалась заданная температура воздуха.

Теплоотдачу радиаторов можно программировать во времени, если применить соответствующую компьютеризированную термоголовку. Это полезно, при задании отключения отдельных комнат по времени, например на ночь и первую половину дня, кода все на работе… Правда у нас, в отличие от западных стран, такие устройства уже не окупаются…

Термоголовки на всех радиаторах можно применять лишь с автоматизированным котлом, который отключится, если в системе все радиаторы или большинство окажутся закрытыми. Возможность частичного применения таких приборов с обычным котлом рассматривается для каждого проекта…

Как известно, эффективность теплоснабжения дома зависит от многих факторов: схемы подачи-отвода, движения теплоносителя, типа и мощности источника тепла, отопительных приборов, наличия регулирующей аппаратуры и т.д. А чтобы создаваемая система была надежной, т.е. обеспечивала оптимальный микроклимат в помещениях при минимальных затратах на обслуживание, эксплуатацию и ремонт, необходимо уделять внимание и на ряд других вопросов, одним из которых является, например, как установить радиатор отопления.

При этом он подразумевает рассмотрение таких аспектов, как:

  • места размещения отопительных приборов (у стены, в нише);
  • параметры радиаторов (вид, мощность, размеры);
  • схема обвязки;
  • особенности и качество монтажа.

Следует отметить, что проблема подключения приборов отопления существует не только при проектировании и создании новых схем, но и в случае замены старого оборудования в эксплуатируемых системах.

Условия для выбора места и параметров радиаторов

Основным условием при выборе места установки отопительных приборов является создание тепловой завесы на тех участках помещения, где отмечаются наибольшие теплопотери. Обычно это часть стены под окнами, которая может быть плоской или выполнена в виде ниши, или глухие ограждения, контактирующие с внешней средой.

Понятно, что особенности конструкций будут обусловливать и способ размещения радиаторов отопления, который, в свою очередь, будет определять эффективность теплоотдачи.

Следует иметь в виду, что установка приборов на ровной стене обеспечивает максимально возможную эффективность системы – порядка 97 %; размещение их в нише в открытом виде снижает этот показатель до 93 %, в закрытом частично – до 88 %, а полностью закрытом – до 75 %.

Рисунок 1 – Теплопотери при различных вариантах установки отопительных радиаторов

Подбор же требуемого типа радиатора должен базироваться на следующих принципах:

  • соответствие размеров прибора габаритам подоконного пространства (считается, что оптимальным вариантом является заполнение площади ниши не менее чем 75 %);
  • правильный выбор мощности радиаторов (при одних и тех же размерах разные модели могут значительно отличаться по теплоотдаче; кроме того, рекомендуется предусмотреть запас мощности для компенсации различных теплопотерь);
  • надежность и долговечность прибора отопления;
  • соответствие вида радиатора общему стилю оформления помещений (при создании современной системы теплоснабжения не стоит пренебрегать и эстетическими требованиями).

Существующие варианты обвязки радиаторов

Общеизвестно, что системы отопления бывают одно- и двухтрубными. Первый вид наиболее распространен и применяется как в централизованных, так и индивидуальных схемах. Второй вариант используется, как правило, в частном малоэтажном строительстве.

При этом подключение радиаторов отопления возможно по нескольким вариантам:

  • боковая схема – подразумевает подачу и отвод теплоносителя с одной из сторон прибора; чаще всего ее можно встретить в многоэтажных домах, где соединение радиаторов отопления производится последовательно от этажа к этажу;
  • диагональная обвязка – предусматривает подачу нагретой воды с одной стороны радиатора, а отвод – с противоположной;

Необходимо помнить, что при боковом и диагональном вариантах подключения для обеспечения максимальной теплоотдачи оборудования подача теплоносителя должна осуществляться сверху, а обратка снизу.

  • нижняя или седельная схема– подвод и обратка осуществляется в нижней части отопительных приборов, соединенных, как правило, последовательно.

Рисунок 2 – Варианты обвязки радиаторов отопления

Следует иметь в виду, что выбор типа системы и наиболее эффективного варианта обвязки радиатора возможен только при проектировании и создании новой схемы теплоснабжения. В эксплуатируемых домах правильно подключить заменяемые приборы в большинстве случаев возможно только по существующему варианту, т.к. любые коррективы (например, изменение бокового подключения на диагональное) или влекут за собой дополнительные расходы на приобретение материалов и монтаж, или вовсе невозможны по ряду причин.

Особенности монтажа приборов отопления

При наличии определенных навыков установка радиаторов отопления своими руками не является проблемой. Однако владельцам квартир в многоэтажном доме для подключения заменяемых приборов рекомендуется обратиться в соответствующие службы. Это поможет не только избежать многих проблем, в т.ч. и бюрократических, в будущем, но и получить квалифицированную консультацию о том, как установить радиаторы отопления правильно в данном конкретном случае.

Процесс подключения радиатора состоит из нескольких этапов:

  • подготовка – включает выбор оптимальной модели прибора, приобретение требуемых материалов, комплектующих и инструментов, а также ремонт стены, на которую будет навешиваться радиатор;

До монтажа отопительного оборудования все окна должны быть установлены, а конструкции под проемами оштукатурены. При этом не рекомендуется выполнять чистовую отделку полов.
Если осуществляется замена приборов, сначала требуется правильно демонтировать старые радиаторы и крепления (при необходимости), а затем отремонтировать поверхности.

  • монтажные работы, включающие разметку стены; установку крепежных элементов или кронштейнов; навешивание прибора и проверку его расположения по уровню; подключение необходимой запорно-регулирующей арматуры (кранов, терморегуляторов и т.п.); обвязку радиатора трубами;
  • опрессовка системы и устранение дефектов.

Подготовительный этап

Для обеспечения правильного подключения и качественного монтажа могут потребоваться следующие инструменты, комплектующие и материалы:

  • набор специальных ключей для навинчивания гаек, переходников и т.д.;
  • радиаторная арматура (заглушки, переходники, футорки, запорные краны, воздухоотводящий кран Маевского, термовентили, термостатические головки);

Некоторые производители комплектуют радиатор основными комплектующими, но в большинстве случаев монтажный набор придется приобретать отдельно. При этом готовые комплекты универсальны и позволяют подключить прибор по любой из существующих схем.

  • уплотнители;
  • специальная нить, паста или пакля для резьбовых соединений;
  • трубы.

Рисунок 3 – Примерный набор необходимых инструментов и материалов для подключения радиатора

Если осуществляется замена радиатора, сначала перекрываются подача и обратка, затем срезается и удаляется старый прибор отопления. Также рекомендуется демонтировать имеющиеся крепления, особенно в случае установки оборудования другого типа.

Монтажные работы

Этот этап начинается с разметки, которая необходима для того, чтобы установить прибор правильно с соблюдением всех нормативных требований по отступам до строительных конструкций, а также определить точки крепления кронштейнов или штырей.

Для фиксации радиаторов могут применяться различные крепежные элементы. Наиболее распространенными являются специальные штыри, монтируемые непосредственно в стену при помощи цементно-песчаного раствора. В последнее время часто используют угловые кронштейны, закрепляемые с помощью саморезов или дюбелей. Как правило, для обеспечения надежной установки приборов достаточно двух штыревых соединения или кроштейна.

Рисунок 4 – Схема радиатора отопления и его размещения на стене

Перед навешиванием радиатора следует предварительно подготовить резьбовые соединения на трубах. Затем на приборе требуется установка заглушки, крана Маевского или другого элемента для удаления воздуха. На отверстия, используемые для подключения к трубам, требуется смонтировать запорную и регулирующую арматуру, для чего в радиатор сначала нужно установить штуцер, накидные гайки с правильной резьбой, затем герметизировать их с помощью пасты, нити или пакли. После этого устанавливаются сами краны, термостаты и надежно фиксируются специальными ключами.

Паклю или герметизирующую нить следует наматывать по часовой стрелке при правой резьбе и наоборот при левой. При этом достаточно сделать несколько мотков на внешней кромке соединения, а не наматывать материал по всей поверхности резьбы.

После того, как радиатор будет навешен на крепления, требуется проверить его расположение по уровню и при необходимости скорректировать его подгибанием штыря или регулировкой кронштейна.

Следует отметить, что строго горизонтальное положение радиатора требуется в принудительных (насосных) системах со встречным движением теплоносителя и воздуха, где образование воздушных пробок наиболее вероятно.

В схемах с низким рабочим давлением или в тех, где воздух и теплоноситель движутся в одном направлении, небольшой уклон от трубопровода подводки не только допускается, но и желателен, т.к. будет обеспечивать отвод лишнего воздуха в магистраль.

Рисунок 5 – Схема обвязки радиатора

Для присоединения приборов отопления к стояку можно использовать различные виды труб. Но в последнее время все чаще используются полипропиленовые, что обусловлено их приемлемой стоимостью и простотой монтажа. В этом случае запорные краны, которые могут быть угловыми и ли прямыми, а также другие элементы должны быть выполнены из такого же материала.

Рисунок 6 – Схема присоединения радиаторов к полипропиленовому стояку

Если требуется соединить замененную и обвязанную пластиковыми трубами батарею к действующему металлическому стояку, рекомендуется некоторую его часть заменить также полипропиленом.

Опрессовка системы

Этот этап требуется для проверки качества монтажных работ, а также того, правильно ли установлены и подключены радиаторы отопления и другое оборудование.

В последнем случае можно ориентироваться на тактильные ощущения (прикосновения) или воспользоваться пирометром. При этом основным показателем корректности выполнения работ будет равномерность прогрева радиаторов.

Следует иметь в виду, что в большинстве случаев наблюдается некоторая разница температур в разных секциях или в одном элементе по высоте, которая является нормой при небольших отклонениях значений.

Слишком большой диапазон показателей может свидетельствовать:

  • об образовании в системе воздушной пробки, после устранения которой путем стравливания с помощью воздушников, кранов Маевского и т.п. все радиаторы начинают прогреваться равномерно; если это явление будет возникать слишком часто, потребуется изменить уклон подводящих и отводящих труб;
  • о неправильном (обратном) подключении отопительного прибора, когда подача теплоносителя осуществляется снизу, а обратка сверху (требуется демонтировать соединения и исправить ошибку);
  • о сильном засорении нижнего протока отложениями и другими загрязнениями (это может наблюдаться у радиаторов, бывших в употреблении некоторое время; требуется либо прочистка, либо приобретение нового оборудования);
  • о недостаточной скорости движения теплоносителя или давления в системе (часто отмечается при боковом подключении приборов; рекомендуется изменить его на боковую схему или добавить удлинитель протока жидкости).

Можно приобрести сколь угодно мощный котел отопления, но не добиться при этом ожидаемого тепла и комфорта в доме. Причиной этому вполне могут стать неправильно подобранные приборы конечного теплообмена в помещениях, в роли которых традиционно чаще всего выступают радиаторы. Но даже и вроде бы вполне подходящие по всем критериям оценки иногда не оправдывают надежд своих хозяев. Почему?

А причина может крыться в том, что подключение радиаторов произведено по схеме, весьма далекой от оптимальной. И это обстоятельство просто не позволяет им показать те выходные параметры теплоотдачи, что анонсируются производителями. Поэтому давайте подробнее разберемся с вопросом: какие возможны схемы подключения радиаторов отопления в частном доме. Посмотрим , в чем преимущества и недостатки тех или иных вариантов. Увидим, какие технологические приёмы используются для оптимизации некоторых схем.

Необходимая информация для правильного выбора схемы подключения радиатора

Для того чтобы дальнейшие пояснения стали неопытному читателю более понятными, имеет смысл для начала рассмотреть, что же собой в принципе представляет стандартный радиатор отопления. Термин «стандартный» применён оттого, что существуют и совершенно «экзотические» батареи, но в планы этой публикации их рассмотрение не входит.

Принципиальное устройство радиатора отопления

Итак, если изобразить обычный радиатор отопления схематично, может получиться примерно такая картина:


С точки зрения компоновки – это обычно совокупность теплообменных секций (поз.1). Количество этих секций может различаться в довольно широком диапазоне. Многие модели батарей позволяют варьировать это количество, добавляя и уменьшая, в зависимости от необходимой тепловой суммарной мощности или исходя из предельно допустимых размеров сборки. Для этого между секциями предусматривается резьбовое соединение с помощью специальных муфт (ниппелей) с необходимым уплотнением. Другие радиаторы такой возможности не предполагают секции их соединены «намертво» или вовсе представляют собой единую металлическую конструкцию. Но в свете нашей темы это отличие принципиального значения не имеет.

А вот что важно – это, так сказать гидравлическая часть батареи. Все секции объединены общими коллекторами, расположенными горизонтально сверху (поз. 2) и снизу (поз. 3). И вместе с тем , в каждой из секций предусмотрено соединение этих коллекторов вертикальным каналом (поз. 4) для движения теплоносителя.

Каждый из коллекторов имеет соответственно по два входа. На схеме они обозначены G1 и G2 для верхнего коллектора, G3 и G4 – для нижнего.

В подавляющем большинстве схем подключения, используемых в отопительных системах частных домов, всегда задействованы только два этих входа. Один подключен к трубе подачи (то есть идущей от котла). Второй – к «обратке», то есть к трубе, по которой теплоноситель возвращается от радиатора в котельную. Остальные два входа перекрываются заглушками или иными запорными устройствами.

И вот что важно – от того, как взаимно будут расположены эти два входа, подачи и «обратки», как раз во многом и зависит эффективность ожидаемой теплоотдачи радиатора отопления.

Примечание : Безусловно, схема дана со значительным упрощением, и во многих типах радиаторов может иметь свои особенности. Так, например , в знакомых всем чугунных батареях типа МС - 140 каждая секция имеет по два вертикальных канала, соединяющих коллекторы. А в стальных радиаторах и вовсе нет секций – но система внутренних каналов в принципе повторяет показанную гидравлическую схему. Так что все, что будет говориться далее, в равной мере относится и к ним.

Где труба подачи, а где «обратки»?

Вполне понятно, что для того чтобы правильно оптимально расположить вход и выход в радиатор, необходимо по меньшей мере знать, в каком направлении осуществляется движение теплоносителя. Иными словами, где же подача, а где «обратка». А принципиальное отличие может скрываться уже в самом типе отопительной системы – она бывает однотрубной или

Особенности однотрубной системы

Эта система отопления особенно распространена в многоэтажках, пользуется довольно широкой популярностью и в одноэтажном индивидуальном строительстве. Ее широкая востребованность прежде всего зиждется на том, что при создании требуется значительно меньше труб, сокращаются объемы монтажных работ.

Если объяснить максимально просто , то эта система представляет собой одну трубу, проходящую от патрубка подачи до входного патрубка котла (как вариант – от подающего до обратного коллектора), на которую словно «нанизаны» последовательно подключенные радиаторы отопления.

В масштабах одного уровня (этажа) это может выглядеть примерно так:


Совершенно очевидно, что «обратка» первого в «цепи» радиатора становится подачей очередного – и так дальше, до конца этого замкнутого контура. Понятно, что от начала к концу однотрубного контура температура теплоносителя неуклонно снижается, и это является одним из наиболее значимых недостатков подобной системы.

Возможно и расположение однотрубного контура, которое характерно для зданий в несколько этажей. Такой подход обычно практиковался при строительстве городских многоквартирных домов. Однако, можно его встретить и в частных домах в несколько этажей. Об этом тоже не следует забывать, если, скажем, дом достался хозяевам от старых владельцев, то есть с уже смонтированной разводкой контуров отопления.

Здесь возможны два варианта, показанные ниже на схеме соответственно под буквами «а» и «б».

Цены на популярные радиаторы отопления


  • Вариант «а» называется стояком с верхней подачей теплоносителя. То есть от подающего коллектора (котла) труба поднимается свободно к самой высокой точке стояка, а затем последовательно проходит вниз через все радиаторы. То есть подача горячего теплоносителя непосредственно на батареях осуществляется по направлению сверху вниз.
  • Вариант «б » - однотрубная разводка с нижней подачей. Уже на пути вверх, по восходящей трубе, теплоноситель минует череду радиаторов. Затем направление потока меняется на противоположное, теплоноситель проходит ещё через вереницу батарей, пока не попадает в коллектор «обратки».

Второй вариант применяется из соображений экономии труб, но очевидно , что недостаток однотрубной системы, то есть падение температуры от радиатора к радиатору по ходу теплоносителя, выражено в еще большей степени.

Таким образом, если у вас в доме или квартире смонтирована однотрубная система, то для выбора оптимальной схемы подключения радиаторов в обязательном порядке следует уточнить, в каком направлении осуществляется подача теплоносителя.

Секреты популярности системы отопления «ленинградка»

Несмотря на довольно значимые недостатки однотрубные системы все же остаются довольно популярными. Пример тому – о которой подробно рассказывается в отдельной статье нашего портала. А еще одна публикация посвящена – тому элементу, без которого однотрубные системы нормально работать не в состоянии.

А если система двухтрубная?

Двухтрубная система отопления считается более совершенной. Она проще в управлении, лучше поддается тонким регулировкам. Но это на фоне того, что для ее создания потребуется больше материала, и монтажные работы становятся более масштабными.


Как видно по иллюстрации, и труба подачи, и обратная по сути представляют собой коллекторы, к которым подключены соответствующие патрубки каждого из радиаторов. Очевидное достоинство – температура в подающей трубе-коллекторе выдерживается практически единой для всех точек теплообмена, то есть почти не зависит от расположения конкретной батареи по отношению к источнику тепла (котлу).

Применяется такая схема и в системах для домов в несколько этажей. Пример показан на схеме ниже:


В этом случае стояк подачи сверху заглушен , как и труба «обратки», то есть они превращены в два параллельных вертикальных коллектора.

Здесь важно правильно понять один нюанс. Наличие двух труб около радиатора еще вовсе не означает, что и система уже сама по себе является двухтрубной. Например, при вертикальной разводке может быть вот такая картина:


Такое расположение может ввести неопытного в этих вопросах хозяина в заблуждение. Несмотря на наличие двух стояков, система все равно однотрубная , так как радиатор отопления подключён только к одной из них. А вторая – это стояк, обеспечивающий верхнюю подачу теплоносителя.

Цены на алюминиевые радиатор

алюминиевый радиатор

Иное дело, если подключение выглядит следующим образом:


Разница очевидна: батарея врезана в две разных трубы – подачи и «обратки». Именно поэтому между входами и не наблюдается перемычки-байпаса – он при такой схеме совершенно не нужен.

Существуют и иные схемы двухтрубного подключения. Например, так называемое коллекторное (его еще именуют «лучевым» или «звездой»). К такому принципу нередко прибегают, когда стараются все трубы разводки контура разместить скрытно, например, под покрытием пола.


В таких случаях в определенном месте размещают коллекторный узел, а от него уже проводятся отдельные трубы подачи и «обратки» на каждый из радиаторов. Но по своей сути, это все равно двухтрубная система.

К чему все это рассказывается? А к тому, что если система двухтрубная, то для выбора схемы подключения радиаторов важно четко знать – какой из труб являете коллектором подачи, а какая подсоединена к «обратке».

А вот направление потока по самим трубам, что было определяющим при однотрубной системе, здесь уже роли не играет. Движение теплоносителя непосредственно через радиатор будет зависеть исключительно от взаимного расположения патрубков врезки в подачу и в «обратку».

Кстати, даже в условиях не самого большого дома вполне может применяться и сочетание обеих схем. Например, применена двухтрубная, однако, на отдельном участке, скажем, в одном из просторных помещений или в пристройке размещены несколько радиаторов, связанных по однотрубному принципу. А это значит, что для выбора схемы подключения важно не запутаться, и индивидуально оценить каждую точку теплообмена: что для нее будет определяющим - направление потока в трубе или взаимное расположение труб-коллекторов полдачи и «обратки».

Если такая ясность достигнута, можно подбирать оптимальную схему подключения радиаторов к контурам.

Схемы подключения радиаторов к контуру и оценка их эффективности

Все сказанное выше было своеобразной «прелюдией» к этому разделу. Сейчас мы будем знакомиться с тем, как можно подключить радиаторы к трубам контура, и какой из способов дает максимальную эффективность теплообмена.

Как мы уже видели, задействуются два входа радиатора, и еще два - глушатся. Какое же направление движения теплоносителя через батарею станет оптимальным?

Еще несколько предваряющих слов. Каковы «побудительные причины» перемещения теплоносителя по каналам радиатора.

  • Это, во-первых, динамический напор жидкости, создаваемый в контуре отопления. Жидкость стремится заполнить весь объем, если для того созданы условия (отсутствуют воздушные пробки). Но вполне понятно, что, как и любой поток, будет стремиться протекать по пути наименьшего сопротивления.
  • Во-вторых, «движущей силой» становится и разница температур (и, соответственно – плотности) теплоносителя в самой полости радиатора. Более горячие потоки стремятся вверх, стараясь вытеснить остывшие.

Совокупность этих сил и обеспечивает протекание теплоносителя через каналы радиатора. Но в зависимости от схемы подключения общая картина может довольно сильно различаться.

Цены на чугунные радиаторы

чугунный радиатор

Диагональное подключение, подача сверху

Такую схему принято считать наиболее эффективной. Радиаторы при подобном подключении показывают свои возможности в полной мере. Обычно при расчетах системы отопления именно она берется за «единицу», а на все остальные будет вводиться тот или иной поправочный понижающий коэффициент.


Совершенно очевидно, что никаких препятствий при таком подключении теплоноситель встретить не может априори. Жидкость полностью заполняет объем трубу верхнего коллектора, равномерно протекает по вертикальным каналам от верхнего коллектора к нижнему. В итоге вся теплообменная площадь радиатора прогревается равномерно, достигается максимальная теплоотдача батареи.

Одностороннее подключение, подача сверху

Очень распространенная схема – именно так обычно монтируются радиаторы в однотрубной системе в стояках многоэтажек при верхней подаче, или на нисходящих ветках – при нижней подаче.


В принципе, схема довольно эффективная, особенно если сам радиатор имеет не слишком большую длину. Но если секций в батарею собрано много, то не исключается появление негативных моментов.

Вполне вероятна ситуация, что кинетической энергии теплоносителя будет недоставать для того, чтобы потоку пройти полноценно по верхнему коллектору до самого конца. Жидкость ищет «лёгких путей», и основная масса потока начинает проходить по вертикальным внутренним каналам секций, которые расположены ближе к патрубку входа. Таким образом, нельзя полностью исключить образования в «периферийной зоне» участка застоя, температура которого будет ниже, чем в близлежащей от стороны врезки области.

Даже при нормальных размерах радиаторов по длине обычно приходится мириться с потерей тепловой мощности примерно на 3÷5 % . Ну а если батареи длинные, то эффективность может быть и еще ниже. При этом лучше применить или первую схему, или использовать специальные приемы оптимизации подключения – этому будет посвящён отдельный раздел публикации.

Одностороннее подключение, подача снизу

Схему никак нельзя назвать эффективной, хотя, кстати, используется она довольно часто при монтаже однотрубных систем отопления во многоэтажных домах, если подача осуществляется снизу. На восходящей ветке все батареи в стояке чаще всего строители врежут именно так. и, наверное, это и есть единственно хоть сколько-то оправданный случай ее использования.


При всей, вроде бы, схожести с предыдущей, недостатки здесь лишь усугубляются. В частности, возникновение застойной зоны в удаленной от входа стороне радиатора становится еще более вероятным. Это легко объяснимо. Мало того что теплоноситель будет искать наиболее короткий и свободный путь, его стремлению вверх будет способствовать и разница в плотности. И периферия может или «замереть» или циркуляция в ней будет недостаточна. То есть дальний край радиатора станет ощутимее холодней.

Потери эффективности теплоотдачи при таком подключении могут достигать 20÷22 % . То есть без крайней необходимости прибегать к ней не рекомендуется. И если обстоятельства не оставляют другого выбора, то рекомендуется прибегнуть к одному из способов оптимизации.

Двустороннее нижнее подключение

Такая схема применяется довольно часто, обычно из соображений максимально скрыть из видимости трубы подводки. Правда, эффективность ее все же далека от оптимальной.


Совершенно очевидно, что самый простой путь для теплоносителя – это нижний коллектор. Распространение его по вертикальным каналам вверх происходит исключительно из-за разности в плотности. Но этому течению становятся «тормозом» встречные потоки остывшей жидкости. Как результат – верхняя часть радиатора может прогреваться гораздо медленнее и не столь интенсивно, как хотелось бы.

Потери в общей эффективности теплообмена при таком подключении могут доходить до 10÷15%. Правда, подобная схема также легко поддается оптимизации.

Диагональное подключение с подачей снизу

Сложно придумать ситуацию, при которой пришлось бы вынуждено прибегнуть к подобному подключению. Тем не менее , рассмотрим и эту схему.

Цены на биметаллические радиаторы

биметаллические радиаторы


Входящий в радиатор прямой поток постепенно растрачивает свою кинетическую энергию, и может просто «не добивать» по всей длине нижнего коллектора. Этому способствует и то, что потоки на начальном участке устремляются вверх, и как по кратчайшему пути, и за счёт разницы температуры. В итоге на батарее с большим комическом секций вполне вероятно появление застойной области с пониженной температурой под патрубком врезки в обратку.

Примерные потери эффективности, несмотря на кажущуюся схожесть с самым оптимальным вариантом, при таком подключении оцениваются в 20%.

Двустороннее подключение сверху

Скажем честно – это больше для примера, так как применить на практике подобную схему – будет верх неграмотности.


Посудите сами – для жидкости открыт прямой проход через верхний коллектор. И вообще никаких других побудительных мотивов для распространения по остальному объёму радиатора. То есть реально будет греться только область вдоль верхнего коллектора – остальная часть оказывается «вне игры». Оценивать потери эффективности в данном случае вряд ли стоит – радиатор сам по себе превращается в однозначно неэффективный.

К верхнему двустороннему подключению прибегают нечасто. Тем не менее , существуют и такие радиаторы – выраженно высокие, нередко одновременно выполняющие роль сушилок. И если приходится подводить трубы именно так, то в обязательном порядке применяют различные способы превращения подобного подключения в оптимальную схему. Очень часто это уже заложено в конструкции самих радиаторов, то есть верхнее одностороннее подключение остается таковым только визуально.

Как можно оптимизировать схему подключения радиатора?

Вполне понятно, что любым хозяевам хочется, чтобы их система отопления показывала максимальную эффективность при минимальных энергозатратах. А для этого надо стараться применять наиболее оптимальные схемы врезки. Но часто подводка труб уже имеется и не хочется ее переделывать. Или изначально владельцы планируют проложить трубы так, чтобы они стали практически незаметны. Как быть в таких случаях?

В интернете можно встретить немало фотографий, когда оптимизировать врезку стараются изменением конфигурации труб, подходящих к батарее. Эффект повышения теплоотдачи при этом, должно быть, и достигается, но вот внешне некоторые произведения такого «искусства» выглядят, скажем прямо, «не очень».


Существуют и иные методы решения этой проблемы.

  • Можно приобрести батареи, которые, внешне ничем не отличаясь от обычных, все же имеют в своей конструкции особенность, превращающий тот или иной способ возможного подключения в максимально близкий к оптимальному. В нужном месте между секциями в них установлена перегородка, кардинально изменяющая направление движения теплоносителя.

В частности, радиатор может быть предназначен для нижнего двустороннего подключения:


Вся «премудрость» - в наличии перегородки (пробки) в нижнем коллекторе между первой и второй секциями батареи. Теплоносителю деваться некуда, и он поднимается по вертикальному каналу первой секции вверх. А затем, из этой верхней точки, дальнейшее распределение, совершенно очевидно, уже идет , как в самой оптимальной схеме с диагональным подключением с подачей сверху.

Или, например, упомянутый выше случай, когда требуется обе трубы подвести сверху:


В этом примере перегородка установлена на верхнем коллекторе, между предпоследней и последней секцией радиатора. Получается, что всему объему теплоносителя остается только один путь – через нижний вход последней секции, вертикально по ней – и далее в трубу обратки. В итоге «маршрут движения » жидкости по каналам батареи опять-таки становится диагональным сверху вниз.

Многие производители радиаторов этот вопрос продумывают заранее – в продажу поступают целые серии, в которых одна и та же модель может быть рассчитана на различные схемы врезки, но в итоге получается оптимальная «диагональ». Это указывается в паспортах изделия. При этом важно еще учитывать и направление врезки – если изменить вектор потока, то весь эффект теряется.

  • Существует и иная возможность повысить эффективность радиатора по этому принципу. Для этого в специализированных магазинах следует отыскать специальные клапаны.

Они должны соответствовать своими размерами выбранной модели батарей. При вкручивании такого клапана он перекрывает переходной ниппель между секциями, а же затем в его внутреннюю резьбу запаковывается труба подачи или «обратки», в зависимости от схемы.

  • Показанные выше внутренние перегородки предназначены по больше мере для улучшения теплоотдачи при двухстороннем подключении батарей. Но существуют способы и для односторонней врезки — речь идет о так называемых удлинителях потока.

Такой удлинитель – это труба, обычно с диаметром условного прохода в 16 мм, которая соединена с проходной пробкой радиатора и при сборке оказывающаяся в полости коллектора, по его оси. В продаже можно отыскать такие удлинители под требуемый тип резьбы и необходимой длины. Или же просто приобретается специальная муфта, а трубку к ней нужной длины подбирают отдельно.


Цены на металлопластиковые трубы

металлопластиковые трубы

Что этим достигается? Давайте посмотрим на схему:


Теплоноситель, поступающий в полость радиатора, по удлинителю потока попадает в дальний верхний угол, то есть на противоположный край верхнего коллектора. И вот отсюда его движение к выходному патрубку уже будет осуществляться опять же по оптимальной схеме «диагональ сверху вниз».

Многие мастера практикуют и самостоятельное изготовление подобных удлинителей. Если разобраться, то ничего невозможного в этом нет.


В качестве самого удлинителя вполне можно использовать металлопластиковую трубу для горячей воды, диаметром 15 мм. Останется лишь с внутренней стороны в проходную пробку батареи запаковать фитинг для металлопласта. После сборки батареи удлинитель нужной длины становится на место.

Как видно из изложенного, практически всегда можно отыскать решение, как превратить малоэффективную схему врезки батарей в оптимальную.

А что можно сказать про одностороннее нижнее подключение?

Могут недоуменно спросить – а почему в статье пока еще никак не упомянута схема нижнего подключения радиатора с одной стороны? Ведь она пользуется довольно широкой популярностью, так как в максимальной степени позволяет осуществить скрытую подводку труб.

А дело в том, что выше рассматривались возможные схемы, так сказать, с гидравлической точки зрения. И в их череде одностороннему нижнему подключению просто нет места – если в одной точке и подавать, и отбирать теплоноситель, то никакого потока через радиатор и вовсе не случится.

То, что принято понимать под нижним односторонним подключением на деле предполагает только подвод труб к одному краю радиатора. А вот дальнейшее движение теплоносителя по внутренним каналам, как правило, организуется по одной из оптимальных схем, рассмотренных выше. Это достигается или особенностями устройства самой батареи, или специальными адаптерами.

Вот лишь один из примеров радиаторов, специально предназначенных для подводки труб с одной стороны снизу:

Если разобраться в схеме то сразу становится понятно, что система внутренних каналов, перегородок и клапанов организует движение теплоносителя по уже известному нам принципу «одностороннее с подачей сверху», который может считаться одним их оптимальных вариантов. Есть похожие схемы, которые дополнены еще и удлинителем потока, и тогда вообще достигается самая эффективная картина «диагональ сверху вниз».

Даже обычный радиатор вполне можно преобразовать в модель с нижним подключением. Для этого приобретается специальный комплект – выносной адаптер, который, как правило, сразу оснащается и термоклапанами для термостатической регулировки радиатора.


Верхний и нижний патрубки такого устройства запаковываются в гнезда обычного радиатора безо всяких доработок. В итоге – готовая батарея с нижним односторонним подключением, да еще и с устройством терморегулирования и балансировки.

Итак, со схемами подключения разобрались. Но что еще может оказывать влияние на эффективность теплоотдачи радиатора отопления?

Как сказывается на эффективности работы радиатора его расположение на стене?

Можно приобрести очень качественный радиатор, применить оптимальную схему его подключения, но в итоге не добиться ожидаемой теплоотдачи, если не принимать во внимание еще ряд важных нюансов его установки.

Существует несколько общепринятых правил расположения батарей в комнате относительно стены, пола, подоконников, других предметов интерьера.

  • Чаще всего радиаторы располагают под оконными проемами . Это место все равно невостребованное для других объектов, а помимо этого – потоки нагретого воздуха становятся подобием тепловой завесы, которая во многом ограничивает свободное распространение холода от поверхности окна.

Безусловно, это лишь один из вариантов установки, и радиаторы могут монтироваться и на стенах, вне зависимости от наличия на тех оконных проемов – все зависит от потребного количества таких приборов теплообмена.


  • Если радиатор устанавливается под окном, то стараются придерживаться правила, что его длина должна составлять около ¾ ширина окна. Так будут получены оптимальные показатели теплоотдачи и защиты от проникновения холодного воздуха от окна. Батарею устанавливают по центру, с возможным допуском в ту или иную сторону до 20 мм.
  • Не следует устанавливать батарею слишком высоко – нависающий над ней подоконник способен превратиться в труднопреодолимую преграду для восходящих конвекционных потоков воздуха, что приводит к снижению общей эффективности теплообмена. Стараются выдерживать просвет порядка 100 мм (от верхнего края батареи до нижней поверхности «козырька»). Если не получается задать все 100 мм, то хотя бы не менее ¾ от толщины радиатора.
  • Существует определенная регламентация и просвета снизу, между радиатором и поверхностью пола. Слишком высокое расположение (более 150 мм) может привести к образованию вдоль покрытия пола слоя воздуха, незадействованного в конвекции, то есть ощутимо холодной прослойки. Слишком маленькая высота , менее 100 мм, привнесет ненужные трудности при проведении уборок, пространство под батареей может превратиться в скопление пыли, что, кстати, тоже негативно скажется на эффективности тепловой отдачи. Оптимальная высота – в пределах 100÷120 мм.
  • Следует выдерживать и оптимальное расположение от несущей стены. Еще при установке кронштейнов для навеса батареи учитывают, что между стеной и секциями должен оставаться свободный просвет как минимум в 20 мм. В противном случае и там могут скопиться залежи пыли, нарушится нормальная конвекция.

Эти правила можно считать ориентировочными. Если других рекомендаций производитель радиаторов не дает , то следует руководствоваться ими. Но весьма часто в паспортах конкретных моделей батарей имеются схемы, в которых уточняются рекомендуемые параметры установки. Безусловно , тогда за основу при проведении монтажных работ берутся именно они.


Следующий нюанс – насколько открытой оказывается установленная батарея для полноценного теплообмена. Безусловно, максимальные показатели будут при совершенно открытой установке на ровной вертикальной поверхности стены. Но, вполне понятно, к такому способу прибегают не столь часто.


Если батарея стоит под окном, то конвекционному потоку воздуха может мешать подоконник. То же самое, даже в большей мере, касается и ниш в стене. Кроме того, радиаторы нередко стараются прикрыть , а то и вовсе полностью закрытыми (за исключением фронтальной решетки ) кожухами. Если эти нюансы не учесть при выборе требуемой мощности обогрева, то есть тепловой отдачи батареи, то вполне можно столкнуться с печальным фактом, что достичь ожидаемой комфортной температуры – не получается.


Ниже в таблице приведены основные возможные варианты установки радиаторов на стене по их «степени свободы». Каждый из случаев характеризуется своим показателем потери эффективности общего теплообмена.

Иллюстрация Эксплуатационные особенности варианта установки
Радиатор установлен так, что сверху не перекрывается ничем, или же подоконник (полка) выступают не более, чем на ¾ толщины батареи.
В принципе, преград для нормальной конвекции воздуха не наблюдается.
Если батарея не закрыта плотными шторами, то нет помех и для прямого теплового излучения.
При расчетах такая схема установки принимается за единицу.
Горизонтальный «козырек» подоконника или полки полностью перекрывает радиатор сверху. То есть появляется довольно значимое препятствие для восходящего конвекционного потока.
При нормальном просвете (о котором уже говорилось выше – около 100 мм) преграда не становится «фатальной», но определенные потери эффективности все же наблюдаются.
Инфракрасное излучение от батареи остается в полном объеме.
Итоговую потерю эффективности можно оценить примерно в 3÷5%.
Схожая ситуация, но только сверху расположился не козырёк, а горизонтальная стенка ниши.
Здесь потери уже несколько больше – помимо просто наличия препятствия для воздушного потока, некоторая часть тепла будет расходоваться на непродуктивный прогрев стены, которая обычно обладает весьма внушительной теплоемкостью.
Поэтому вполне можно ожидеть тепловых потерь применрно 7 - 8%.
Радиатор установлен как в первом варианте, то есть препятствий для конвекционных потоков не наблюдается.
Но с лицевой стороны по всей свой площади прикрыт декоративной решёткой или экраном.
Значительно снижается интенсивность инфракрасного теплового потока, что, кстати является определяющим принципом теплопередачи для чугунных или биметаллических батарей.
Общие потери эффективности нагрева могут достигать 10÷12%.
Декоративный кожух закрывает радиатор со всех сторон.
Несмотря на наличие щелей или решеток для обеспечения теплообмена с воздухом в помещении, показатели и теплового излучения, и конвекции резко уменьшаются.
Стало быть, приходится говорить о потере эффективности, доходящей до 20÷25%.

Итак, нами были рассмотрены основные схемы подключения радиаторов к контуру отопления, проанализированы достоинства и недостатки каждой из них. Получена информация по применяемым способам оптимизации схем, если по каким-либо причинам другими путями изменить их невозможно. Наконец, приведены рекомендации по размещению батарей непосредственно на стене – указаны те риски потери эффективности, которые сопровождают избранные варианты установки.

Надо полагать, эти теоретические познания помогут читателю выбрать правильную схему исходя из конкретных условий создания системы отопления . Но логичным, наверное, было бы завершить статью предоставлением нашему посетителю возможности самостоятельно оценить необходимую батарею отопления, так сказать, в числовом выражении, с привязкой к конкретному помещению и с учетом всех рассмотренных выше нюансов.

Пугаться не надо – все это будет несложно, если воспользоваться предлагаемым онлайн-калькулятором. А ниже будут приведены необходимые краткие пояснения по работе с программой.

Как рассчитать, какой радиатор нужен для конкретного помещения?

Все достаточно просто.

  • Поначалу рассчитывается то количество тепловой энергии, которое необходимо для прогрева помещения в зависимости от его объема , и для компенсации возможных тепловых потерь. Причем , учитывается довольно внушительный список разносторонних критериев.
  • Затем производится корректировка полученного значения в зависимости от планируемой схемы врезки радиатора и особенностей его расположения на стене.
  • Итоговое значение покажет, какой мощности необходим радиатор для полноценного обогрева конкретной комнаты. Если приобретается разборная модель, то можно заодно

После того, как были вставлены окна и двери в соответствующие проёмы, полы и стены готовы к чистовой отделке, приступают к выбору отапливающего оборудования, типа труб и варианта их подключения (обвязки) между собой. Современные отопительные системы реализуются при использовании множества различных компонентов. Среди них основную задачу выполняют обогревательные котлы, трубопровод и непосредственно сами обогреватели (радиаторы), устанавливаемые в помещения.

Процесс реализации проекта довольно прост. Он состоит из таких основных этапов, как разметка мест для установки обогревательного оборудования, подводка к нему трубопровода и подключение. Обвязка для батарей может реализовываться с использованием разных типов труб, способов и схем их соединения. Независимо от того, какая была выбрана схема и оборудование, вариантов обвязки всего 2 – это одноконтурная (т.н. однотрубная) и двухконтурная (или двухтрубная). Рассмотрим их подробней.

Одноконтурная обвязка батарей отопления

Однотрубная система предполагает подачу нагретой воды от верхнего этажа к нижнему. При этом одна и та же труба используется, как для подачи, так и для отвода воды. Т.е. в такой системе все радиаторы на всех этажах подключены к одному отопительному контуру (трубе).

Сегодня подобная обвязка для батарей довольно часто используется при строительстве многоэтажных домов. Она немногим легче и дешевле в реализации, однако, имеет существенные недостатки в плане эффективности, почему перестаёт использоваться всё чаще. Сюда относится:

  • Отсутствие возможности регулировки температуры отопления в отдельно взятом радиаторе (имеются варианты реализации регулировки только при использовании специальной сантехнической арматуры, использование которой не всегда уместно);
  • Заметное падение температуры при прохождении воды по трубопроводу, т.е. нижние этажи здания обогреваются значительно хуже верхних;
  • При необходимости технического обслуживания или ремонта какого-либо отдельно взятого сегмента системы (например, прорвало трубу на одном из этажей) приходится отключать от отопления весь отопительный контур (стояк).

Двухконтурная система

Обвязка радиатора отопления двухтрубная (двухконтурная), как ясно из названия, предполагает использование контура из двух труб: одна служит для притока, другая для отвода горячей воды (в профессиональном жаргоне труба отвода именуется как «обратка»).

Двухконтурная система исключает все недостатки одноконтурной, т.е. – это:

  • Возможность регулировки температуры на каждом сегменте по отдельности;
  • Одинаковая эффективность обогрева на всех этажах здания;
  • Возможность быстрого отключения сегмента системы для проведения технического обслуживания или его ремонта.

Цена обвязки радиаторов отопления согласно такой схеме более высока, т.к. здесь используются большее количество расходных материалов – сами трубы, фитинги и запорная арматура (вентиля). Даже при отказе от резьбовых фитингов и использовании пайки для соединения труб (в случае с пластиковыми трубами – полипропиленовые, ПВХ или другого типа), количество точек для пайки всегда выше, чем у одноконтурных систем. А это – дополнительный расход на оплату труда мастеров.

Как бы там не было, после выбора той или иной системы, переходят к выбору схемы подключения радиаторов к трубопроводу. Существует несколько основных схем обвязки батарей отопления. Рассмотрим их.

Подключение радиаторов отопления: схемы обвязки, монтаж батарей

На текущий момент активно используются 3 основные схемы подключения обогревательного оборудования к трубопроводу – это:


Запорная и дроссельная арматура

Обвязка радиатора отопления может выполняться при использовании различной запорной и дроссельной арматуры. Она подбирается, как правило, в зависимости от использованной системы подключения труб с отопительным оборудованием.

В одноконтурной системе для подключения одного радиатора потребуется:

  • Два шаровых крана, обеспечивающих возможность отключения радиатора из общей системы;
  • Кран Маевского (или воздухоотводящий кран) – необходим для выпуска воздуха из радиатора в случае его накопления;
  • Для увеличения эксплуатационных качеств радиатора используются (не обязательно) дроссели или термостатические клапаны (дают возможность регулировки температуры нагрева) и автоматические воздухоотводящие краны.
  • При диагональной схеме подключения радиаторов также используется промывочный кран, которым может служить обыкновенный шаровой краник, установленный в пробки радиатора.

Обвязка для батарей в случае с двухконтурной системой выполняется при помощи этого же набора сантехнической арматуры за исключением лишь того, что здесь использование дросселя является обязательным, а кран Маевского или автоматический воздухоотводящий кран используется всего один в самой верхней части контура. Наиболее практичный набор арматуры для подключения одного радиатора выглядит следующим образом:

  • На подводящей трубе устанавливается терморегулирующий клапан;
  • На обратке – дроссель;
  • При диагональном соединении промывочный кран устанавливается в нижней пробке радиатора.

Независимо от того, какая используется схема подключения радиаторов в одноконтурной или двухконтурной системе, требований к использованию конкретных видов труб не имеется. Исключение составляют центральные системы отопления с высоким рабочим давлением, в которых использование стальных труб является обязательным. В случаях с автономными системами отопления возможно использование металлопластиковых и пластиковых труб.

Обвязка для батарей в случае с центральной системой отопления предполагает использование параллельной стояку перемычки, устанавливаемой перед дросселями и вентилями. В противном случае дросселирующая арматура будет регулировать не отдельно взятый радиатор, а полностью весь отопительный контур.

Стальные трубы, в свою очередь, делятся на две основные группы – с защитным цинковым покрытием или без него. Оцинковка защищает сталь от коррозии на протяжении очень длительного времени, однако она делает невозможным использование сварки для соединения труб, т.к. сварные швы станут причиной коррозии. В этом случае используются резьбовые фитинги, а это не столь надёжно по сравнению со сваркой.

Металлопластик

Металлопластиковые трубы – это конструкция, состоящая из металлической (обычно алюминиевый сплав) трубки, с обеих сторон покрытой слоев пластика. Обвязка для батарей из металлопластика имеет несколько особенностей монтажа, включая:

  • Использование труб возможно исключительно в автономных системах отопления с невысоким уровнем давления.
  • Для соединения труб с арматурой и радиатором желательно использование пресс-фитингов (обжим штуцера фитинга металлической нержавеющей гильзой).
  • Если было решено использование пресс-фитингов, тогда обязательным является установка калибратора. В противном случае невозможно добиться качественного соединения трубы с фитингом, т.к. в большинстве случаев в процессе монтажа уплотнительные кольца штуцера задираются, что приводит к протечке уже через 2-3 год эксплуатации.

Обвязка для батарей из пластиковых (полимерных) труб – наиболее распространённый вариант построения систем отопления. Изделия выполняются из различных полимерных материалов, куда относится поливинилхлорид (ПВХ), полиэтилен (ПЭ), полипропилен (ПП) и др.

Каждый из этих материалов имеет свои достоинства и недостатки, поэтому выбор в пользу того или иного типа труб зависит от условий, в которых они будут использоваться, характеристик отопительной системы (давление, максимальная температура нагрева и т.д.). Как бы там не было, пластик отличается высокой стойкостью к коррозии и длительным сроком службы при условии соблюдения всех норм и правил при монтаже отопительной системе.

Остались вопросы? Позвоните или напишите нам!

Комфортное и уютное жилье – вот то место, куда хочется постоянно возвращаться после тяжелого трудового дня. Это настоящая мечта каждого человека и, следует отметить, она осуществима. Достаточно просто оборудовать качественную систему отопления (в том числе выполнить такой процесс как обвязка радиаторов отопления полипропиленом или обычным металлическими трубами), которая будет согревать дом холодными зимними вечерами, создавая безупречную атмосферу комфорта, делая жилище уютным.

Обвязка радиаторов системы отопления: основы процесса

Обвязка радиатора отопления – один из основных этапов обустройства современной обогревательной системы. Если подобная процедура выполнена на высоком и качественном уровне, можно гарантировать наиболее качественную, надежную и производительную работу оборудования.

Основан процесс обвязки отопительных радиаторов на установке специальной запорно-регулирующей арматуры. Такое оборудование призвано регулировать теплоотдачу радиаторов, обеспечивать аварийное их отключение в случае возникновения аварии или же при замене и промывке системы.

Варианты обвязки радиаторов: выбор определенного варианта

В настоящее время схема обвязки радиатора отопления может быть самой различной. Следует отметить, что выбирать определенный вариант нужно с особой тщательностью, учитывая массу параметров и факторов. От правильности выбора схемы будет зависеть тип оборудования, финансовые затраты и, конечно же, комфорт в доме и производительность работы системы отопления.

Среди основных вариантов обвязки отопительных радиаторов можно выделить:

  • Вариант с использованием запорных кранов. Наиболее доступный финансово, но в то же время один из самых неудобных вариантов. Заключается «неудобность» использования кранов для обвязки батарей в отсутствии возможности управления радиатором и регулировки температуры в помещении.

Как можно увидеть на многих фото и видео на нашем портале, на схемах обвязки, монтаж кранов производится на входе и выходе радиатора. При этом у владельца дома есть возможность самостоятельно отключать и демонтировать батареи – для этого просто нужно перекрыть радиатор;

  • Ручная регулировка. Данный вариант предполагает установку своими руками специального регулировочного клапана. За счет такого оборудования можно легко регулировать поток воды, которая поступает в радиатор из общей системы отопления.

Прекрасный выбор для любой квартиры, ведь в централизованной отопительной системе нет возможности добиться точной регулировки температуры без специального оборудования. Предполагается также монтаж байпасов – отрезков трубопроводов, соединяющих напрямую подающий трубопровод и обратку.

Установка подобной трубы производится на отрезке от стойки и до клапана для регулировки подачи теплоносителя;

  • Автоматическая регулировка. Инструкция к данному типу обвязки радиаторов предполагает установку на входе в батарею специального вентиля с термостатической головкой. Посредством простого поворота головки можно добиться нужной температуры теплоносителя, который поступает в радиатор.

Впоследствии данная температура будет поддерживаться автоматически за счет изменения количества подаваемой в радиатор воды. Единственным минусом подобной системы является цена автоматического оборудования – она несколько выше, чем у ручного или, тех же, запорных кранов.

Совет. Если выбор пал именно на обвязку радиаторов отопления с использованием автоматической системы регулировки, то важно позаботиться об обеспечении свободного доступа воздуха к термоголовке.

Обвязка батарей отопления с использованием системы автоматической регулировки: особенности

Кроме, собственно, термоголовки, в системе автоматической регулировки подачи теплоносителя в радиатор отопления при его обвязке могут использоваться некоторые другие элементы – выносные головки. Используются они в случае, если нет возможности обеспечения свободного доступа воздуха с комнатной температурой к термоголовке.

Возможно использование нескольких вариантов:

  1. Монтаж термоголовки с капиллярной трубкой. В таком случае головка будет регулировать температуру в радиаторе автоматически, просто передавая усилие по капиллярной трубке;
  2. Установка на клапан электрической головки с сервоприводом. Принцип работы системы довольно прост – термостат, смонтированный в любом месте, передает сигнал клапану, который, собственно, регулирует подачу воды в радиатор, его температуру.

Нельзя не отметить, что именно клапан с электрической головкой и сервоприводом, выбранный в качестве варианта обвязки радиатора, позволяет достичь массы преимуществ:

  • Возможность одновременного подключения нескольких радиаторов к одному термостату, обеспечивая централизованное управление температурой в батареях;
  • Можно устанавливать термостат со специальный программатором, который автоматически регулирует тепловые режимы в зависимости от дней недели или времени суток;

  • Установка термостата возможна вне зависимости от удаленности от радиаторов.

Итоги

Установить обвязку радиаторов отопления – важный этап обустройства любой обогревательной системы современного дома или квартиры. Как правило, наибольший эффект от использования обвязочной арматуры чувствуется в централизованных системах, ведь удается обеспечить плавную регулировку температуры в помещении.

В настоящее время выбор вариантов обвязки довольно большой, а потому подобрать оптимальный можно в зависимости от множества факторов, начиная от особенностей системы и радиаторов и заканчивая финансовыми возможностями. Доверять выполнение работ по обвязке радиаторов можно как профессиональным мастерам, так и делать процедуру самостоятельно, благо ничего сложного нет.